

Massachusetts Department of Environmental Protection - Drinking Water Program Lead and Copper - 90th PERCENTILE COMPLIANCE Report

L	(Fc	r System	s Require	ed to	Collect	More	Than 5 S	ample	s)								
I. PWS INFORMATION: Please refer to your DEP Lead & Copper sampling plan for approved sampling locations.																	
PWS ID #:		4052007		City / Town:					: Carver								
PWS Name:		New Carver Elementary		r School									M □ NTNC ⊠				
Compling		☐ FIRST SEMI-ANNUAL SAMPLING PERIOD							☐ RED	☐ REDUCED - EVERY THREE YEARS							
Sampling Frequency: (choose one)		☑ SECOND SEMI-ANNUAL SAMPLING PERIOD							☐ LEA	☐ LEAD SERVICE LINE (LSL) REPLACEMENT PROGRAM							
		☐ REDUCED – ANNUAL							☐ DEN	☐ DEMONSTRATION							
Pleas limit (mg/L Step	se report res MDL) but b for copper. 2: Multiply	sults that are elow 0.005 m	ND or less t ng/L for lead	than (• or 0.0	<) the labor 5 mg/L for	atory's coppe	hest value) w reported det r shall be repo is is your 90 th	ection lin	nit (MDL) as measured o	s zero. Re or may be	esults at or a reported as	0.002	ne laborato 5 mg/L for	ry's det lead or	ection 0.025		
Step than Note	the action le	evel, then yo lude school i	u have an ex results on th	xceed is forn	ance and a	re req	e number aga uired to conta s is a school.	act Mass Rememb	DEP as so	on as pos	sible for info	ormatic	n on comp	illance a	actions.		
the p	ersons serv	ed at each s	sampled loca	ation a	s per 310 (CMR 2	2.06B(6)(c) ¹ .	Z									
		LEAD	S (mg/L)								SULTS (mg/L)						
#	Results	#	Results	#	Results	#	Results	#	Results	#	Results	#	Results	#	Results		
1*	0.001	16	0.001	31	0.001	46		1*	0.078	16	0.857	31	3.57	46			
2	0.001	17	0.001	32	0.001	47		2	0.14	17	1.18	32	3.72	47			
3	0.001	18	0.001	33	0.001	48		3	0.201	18	1.18	33	4.62	48			
4	0.001	19	0.001	34	0.001	49		4	0.208	19	1.31	34	5.28	49			
5	0.001	20	0.001	35	0.001	50		5	0.215	20	1.41	35	5.65	50			
6	0.001	21	0.001	36	0.001	51		6	0.217	21	1.43	36	7	51			
7	0.001	22	0.001	37	0.001	52		7	0.233	22	1.44	37	8.02	52			
8	0.001	23	0.001	38	0.002	53		8	0.266	23	1.45	38	8.25	53			
9	0.001	24	0.001	39	0.002	54		9	0.567	24	1.52	39	8.81	54			
10	0.001	25	0.001	40	0.002	55		10	0.69	25	2.08	40	12.1	55			
11	0.001	26	0.001	41		56		11	0.69	26	2.67	41		56			
12	0.001	27	0.001	42		57		12	0.741	27	2.80	42		57			
13	0.001	28	0.001	43		58		13	0.745	28	2.86	43		58			
14	0.001	29	0.001	44		59		14	0.769	29	2.98	44		59 60			
15	0.001	30	0.001	45		60		15	0.804	30	3.41	45		00			
ľ	*Lowest Value My system was required to collect: Total # of samples collected: 40 lead and copper samples. My system collected: 40 lead and copper samples. Total # of samples collected: 40 x 0.9 = 36 This number is my system's 90 th percentile sample #. Circle the 90 th percentile sample # for both lead and copper in the table above, and enter the results in the appropriate spaces below.																
0.001				Compared to 0.015 mg/L					7				Compared to 1.3 mg/L				
(Lead result at 90 th percentile sample#)				(The lead action level)					(Copper result at 90th percentile sample#)					(The copper action level)			
Che	II. CERTIFICATION: Check and complete the correct statement for lead as determined by the above results. If you have an exceedance and you are a community system you must comply with the Consumer Confidence Rule (CCR) reporting requirements in accordance with 310 CMR 22.16A(4)(i)6. ☑ My system was at or below the lead action level.																
Che	ack and con	ystem exce	rrect statem	ent fo	r copper as	deter	(Inse mined from th (CCR) report	ert # of san	nples)	you have	an exceeda	ince ar	id you are	a comm			
Sys	☐ My s	ystem was ystem exc e	at or below	w the	copper a	ction	level.	24			sites exce				on level.		
con	signature bel	ow indicates tl CMR 22.06B(hat all samplin 7). I certify und	g sites der per	on this reno	rt have		ert # of sa ly approve thorized to	d in writing l	by the DEF form and ti	P, and both the	e sites a contail	and sampling ned herein is	procedu true, ac	ıres used curate and		
complete to the best of my knowledge and belief. Assistant Project Coordinator								Dardreau							7/2019		
	Title Signature of PV								VS or Owner's Representative						ate		
Ple	ase submit l	Form LCR-C a	along with thi	s form		,		Rev. ()2- 2019				Page _	c	f1		

 $^{^{1} \} The \ Consumer \ notification \ form \ template \ is \ available \ at: \ \underline{https://www.mass.gov/lists/lead-and-copper-forms-and-templates\#lead-and-copper-rule-(lcr)-ru$