

#### In Partnership with



# Energy Evaluation For Town of Carver Middle / High School



60 South Meadow Road Carver, MA 02330-1200

Proposal # 005122

**Prepared by:** 

**RISE Engineering a Division of Thielsch Engineering** 

Bryan Loughlin Energy Engineer 1341 Elmwood Ave Cranston, RI 02910 Phone (401) 588-0553 Fax (401) 784-3710

# > ENERGY SAVINGS SUMMARY

#### ELECTRIC ENERGY SAVINGS ANALYSIS

|                   | EXISTING<br>KW | PROPOSED<br>KW | SAVED<br>KW | EXISTING<br>KWH | PROPOSED<br>KWH | SAVED<br>KWH | PERCENT<br>SAVINGS |
|-------------------|----------------|----------------|-------------|-----------------|-----------------|--------------|--------------------|
| HOT WATER PUMP #1 | 14.76          | 5.76           | 9.0         | 33,345          | 13,019          | 20,326       | 61%                |
| HOT WATER PUMP #2 | 14.76          | 5.76           | 9.0         | 33,345          | 13,019          | 20,326       | 61%                |
| Gym Lighting      | 32.81          | 26.66          | 6.2         | 118,116         | 62,384          | 55,732       | 52%                |
| TOTALS            | 47.57          | 32.42          | 15.1        | 184,806         | 88,422          | 96,384       | 61%                |

### > <u>INTRODUCTION</u>

Carver Middle / High School serves approximately 600 children in grades 6-12. This building is unique due to the separation of the grades ie. 2 Gyms, Cafeteria etc.. RISE

| GAS ENERGY SAVINGS ANALYSIS         |                    |                    |                 |                    |
|-------------------------------------|--------------------|--------------------|-----------------|--------------------|
|                                     | EXISTING<br>THERMS | PROPOSED<br>THERMS | SAVED<br>THERMS | PERCENT<br>SAVINGS |
| BOILER REPLACEMENT                  | 76,945             | 65,737             | 11,208          | 15%                |
| HOT WATER TANK REPLACEMENT          | 7,152              | 4,517              | 2,635           | 37%                |
| GYM #1 CO2 CONTROL                  | 9,763              | 8,233              | 1,530           | 16%                |
| GYM #2 C02 CONTROL                  | 10,577             | 8,913              | 1,664           | 16%                |
| <b>GYM #1 DESTRATIFICATION FANS</b> | 8,233              | 6,569              | 1,664           | 20%                |
| <b>GYM #2 DESTRATIFICATION FANS</b> | 8,913              | 7,249              | 1,664           | 19%                |
| GYM #1 MOTION CONTROL               | 6,569              | 5,930              | 639             | 10%                |
| GYM #2 MOTION CONTROL               | 7,249              | 6,592              | 657             | 9%                 |
| TOTALS                              | 84,097             | 70,254             | 21,661          | 16%                |

ENGINEERING A DIVSION OF THIELSCH ENGINEERING did an Energy Efficiency Analysis and found a number of opportunities to save both electrical and gas energy.

### **ENERGY SAVINGS OPPORTUNITIES**

## **GYM # 1 and 2**

There are several opportunities for energy savings in the gymnasiums

# Lighting in the Gym

There is an opportunity to save energy in the gym by changing the existing metal halide lighting over to the new more energy efficient T5 lighting c/w sensors for occupancy. This new lighting provides for instant on/off with no re-strike time along with increased light levels over the life of the lamps.



# <u>CO<sup>2</sup> CONTROL (Demand Control Ventilation)</u>

#### Why measure carbon dioxide?

Most Heating, Ventilating, and Air Conditioning systems (HVAC) re-circulate a significant portion of the indoor air to maintain comfort and reduce energy costs associated with heating or cooling outside air. It's virtually impossible for the occupants and building operators to judge the mixture of recirculated and outside air coming out of an air supply duct. Current technology now allows easy and relatively inexpensive measurement of carbon dioxide ( $CO^2$ ) as an "*indicator*" to help ensure that ventilation systems are delivering the recommended minimum quantities of outside air to the building's occupants.

### What is carbon dioxide?

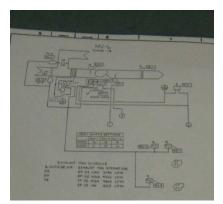
Carbon dioxide is a natural component of the air on this planet. The amount of  $CO^2$  in a given air sample is commonly expressed as parts-per-million (ppm)—the number of molecules of carbon dioxide per million molecules. The outdoor air in most locations contains about 350 ppm carbon dioxide. Higher outdoor  $CO^2$  concentrations can be found near vehicle traffic areas, industry, and sources of combustion.

Where indoor concentrations are elevated (compared to the outside air) the source is usually the building's occupants. People exhale carbon dioxide—the average adult's breath contains about 35,000 to 50,000 ppm of  $CO^2$  (100 times higher than outdoor air). Without adequate ventilation to dilute and remove the  $CO^2$  continuously generated by the occupants,  $CO^2$  concentrations will rise.

# How much CO<sup>2</sup> is too much?

The concentrations of CO2 found in most schools and offices are usually well below the 5,000 ppm occupational safety standard (time-weighted average for a 10-hour workday within a 40-hour workweek) for an industrial workplace. While levels below 5,000 ppm are considered to pose no serious health impacts, experience indicates that individuals in schools and offices with elevated  $CO^2$  concentrations tend to report drowsiness, lethargy, and a general sense of stale air. Researchers are looking for linkages between elevated  $CO^2$  concentrations and reduced productivity and achievement.

#### What are the guidelines and standards for ventilation?


Various codes and standards define ventilation rates for schools and office spaces. The most widely accepted standard is the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) Standard 62–1989. Some state and local codes have adopted the ASHRAE ventilation requirements.

According to ASHRAE Standard 62-1989, classrooms should be provided with 15 cubic feet per minute (cfm) of outside air per person, and offices with 20 cfm outside air per person. Ventilation rates for other indoor spaces are also specified. Standard 62 is currently being revised, so future rates may be different.

Using  $CO^2$  as an indicator of ventilation, ASHRAE has recommended indoor CO2 concentrations be maintained at—or below—1,000 ppm in schools and 800 ppm in offices. Clearly, the outdoor  $CO^2$  concentration directly impacts the indoor concentration. Therefore, it is critical to measure outdoor  $CO^2$  levels when assessing indoor concentrations. ASHRAE recommends indoor  $CO^2$  levels not exceed the outdoor concentration by more than about 600 ppm.

The following table illustrates the relationship between outside air ventilation rates and the resultant indoor  $CO^2$  levels, assuming an outdoor  $CO^2$  of 350 ppm.





|                                | EXISTING<br>THERMS | PROPOSED<br>THERMS | SAVED<br>THERMS | PERCENT<br>SAVINGS |
|--------------------------------|--------------------|--------------------|-----------------|--------------------|
| GYM #1 CO <sup>2</sup> CONTROL | 9,763              | 8,233              | 1,530           | 16%                |
| GYM #2 C0 <sup>2</sup> CONTROL | 10,577             | 8,913              | 1,664           | 16%                |

|                                | PROJECT<br>COST | REB | ATE | STOMER<br>COST | IERGY<br>SAVED | ROI | ΥТРВ |
|--------------------------------|-----------------|-----|-----|----------------|----------------|-----|------|
| GYM #1 CO <sup>2</sup> CONTROL | \$ 14,835       | \$  | -   | \$<br>14,835   | \$<br>1,836    | 12% | 8.1  |
| GYM #2 C0 <sup>2</sup> CONTROL | \$ 13,800       | \$  | -   | \$<br>13,800   | \$<br>1,836    | 13% | 7.5  |

# **DESTRATIFICATION FANS**

When a gym, manufacturing building or other large area is heated, warm air rises to the ceiling while heavier cool air remains at the floor level. This process – called stratification - can significantly impact a facility's energy performance by forcing heating systems to work harder to maintain the desired temperature at floor-level work stations while heat is lost through the facility roof. A simple solution is to install paddle or ducted ceiling fans to bring the warm air back down to floor level. This process of mixing and redistributing heat is called destratification fans can save up to 15% heating costs.

|                              | EXISTING<br>THERMS | PROPOSED<br>THERMS | SAVED<br>THERMS | PERCENT<br>SAVINGS |
|------------------------------|--------------------|--------------------|-----------------|--------------------|
| GYM #1 DESTRATIFICATION FANS | 8,233              | 6,569              | 1,664           | 20%                |
| GYM #2 DESTRATIFICATION FANS | 8,913              | 7,249              | 1,664           | 19%                |

|                                     | PROJECT<br>COST | REBA | ΓE | CUSTOMER<br>COST | ENERGY<br>\$ SAVED | ROI | YTPB |
|-------------------------------------|-----------------|------|----|------------------|--------------------|-----|------|
| <b>GYM #1 DESTRATIFICATION FANS</b> | \$ 11,109       | \$   | -  | \$ 11,109        | \$ 1,997           | 18% | 5.6  |
| <b>GYM #2 DESTRATIFICATION FANS</b> | \$ 11,109       | \$   | -  | \$ 11,109        | \$ 1,997           | 18% | 5.6  |

# MOTION CONTROL

#### Install Motion Sensors for occupied / unoccupied Control.

Presently the gyms AHU's are controlled by the 7 day time clock for occupied / unoccupied control. The gym's utilization varies based on outdoor temperature and student schedule. Motion sensors will detect occupancy and turn on the AHU's. Minimum temperatures will be set such that during unoccupied time if the Gyms temp will not drop below a preset level.



|                              | EXISTING<br>THERMS | PROPOSED<br>THERMS | SAVED<br>THERMS | PERCENT<br>SAVINGS |
|------------------------------|--------------------|--------------------|-----------------|--------------------|
| <b>GYM #1 MOTION CONTROL</b> | 6,569              | 5,930              | 639             | 10%                |
| <b>GYM #2 MOTION CONTROL</b> | 7,249              | 6,592              | 657             | 9%                 |

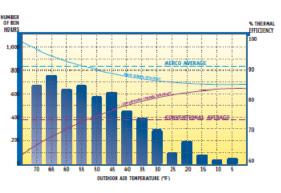
|                              | PROJECT<br>COST | REB | ATE | TOMER<br>COST |      | ERGY<br>AVED | ROI | YTPB |
|------------------------------|-----------------|-----|-----|---------------|------|--------------|-----|------|
| <b>GYM #1 MOTION CONTROL</b> | \$ 6,845        | \$  | -   | \$<br>6,845   | \$ : | 1,060        | 15% | 6.5  |
| <b>GYM #2 MOTION CONTROL</b> | \$ 6,845        | \$  | -   | \$<br>6,845   | \$ : | 1,090        | 16% | 6.3  |

# **HOT WATER TANK**

Carver's hot water system uses a 1.8 MBTU Boiler to heat a 4000 gallon storage tank. The boiler runs year round to provide hot water for the school. A circulation pump circulates water continuously so hot water is instant throughout the building. This system is very inefficient and oversized. We recommend using a commercial hot water tank with fast recovery, such as an AO Smith 400,000 BTU/Hr 130 gallon tank. Circulation pumps would remain.



|                            | EXISTING | PROPOSED | SAVED  | PERCENT |
|----------------------------|----------|----------|--------|---------|
|                            | THERMS   | THERMS   | THERMS | SAVINGS |
| HOT WATER TANK REPLACEMENT | 7,152    | 4,517    | 2,635  | 37%     |


|                            | PROJECT<br>COST | REBATE | CUSTOMER<br>COST | ENERGY<br>\$ SAVED | ROI | YTPB |
|----------------------------|-----------------|--------|------------------|--------------------|-----|------|
| HOT WATER TANK REPLACEMENT | \$ 44,367       | \$-    | \$ 44,367        | \$ 3,162           | 7%  | 14.0 |

# **BOILERS**

Boilers are original to the building and are not high efficiency. There are two 3.3MBTU boilers that can be converted to new AERCO high efficiency condensing boilers. We propose three 2.2 MBTU High Efficiency boilers that can stage up and have redundancy. Pricing is for a turnkey project including all materials, Labor for Demolition and disposal (The pricing does not consider asbestos abatement if necessary).

Pricing Includes: Engineering Demo and disposal of 2 old boilers Install three 2.2 MBTU AERCO Boilers Pipe installation and insulation Controls Startup and Commissioning







|                    | EXISTING | PROPOSED | SAVED  | PERCENT |
|--------------------|----------|----------|--------|---------|
|                    | THERMS   | THERMS   | THERMS | SAVINGS |
| BOILER REPLACEMENT | 76,945   | 65,737   | 11,208 | 15%     |

|                    | PROJECT<br>COST | REBA | TE | CU | STOMER<br>COST | ERGY \$<br>AVED | ROI | YTPB |
|--------------------|-----------------|------|----|----|----------------|-----------------|-----|------|
| BOILER REPLACEMENT | \$ 255,751      | \$   | -  | \$ | 255,751        | \$<br>13,449    | 5%  | 19.0 |

# HEATING HOT WATER CIRCULATION PUMPS

The school building has one heating zone and water is pumped by two 20 HP hot water circulation pumps in a primary backup configuration. Hot water is controlled by 2 way valves located at each fan coil unit. Pressure



off the header is maintained by a cross over valve located in the mechanical room near the pumps (see Picture). The motors are old and not energy efficient.

### PROPOSED CASE

RISE Engineering a Division of Thielsch Engineering is recommending the installation of new Allen Bradley Variable Frequency Drives on both hot water circulation pumps. Both of the VFD's will be equipped with a 4-20ma input signal to interface with the pressure sensor. Both of the VFD's will be equipped with a 3% line reactor to help protect VFD from utility line disturbances and help reduce harmonics generated by the VFD. The motor replacements that RISE Engineering a Division of Thielsch Engineering is recommending are Baldor super E's and are compatible with this type of VFD.

The pressure sensor will monitor the header pressure and provide signal feedback to the VFD via a 4-20ma signal. The VFD will control the header pressure using an onboard PID loop controller, which will control the speed of the pump to maintain a constant header pressure.

The Baldor Super E Motors will replace existing old US motors. The motors are direct coupled to the pumps and will be laser aligned to insure proper operation.

|                   | EXISTING<br>KW | PROPOSED<br>KW | SAVED<br>KW | EXISTING<br>KWH | PROPOSED<br>KWH | SAVED<br>KWH | PERCENT<br>SAVINGS |
|-------------------|----------------|----------------|-------------|-----------------|-----------------|--------------|--------------------|
| HOT WATER PUMP #1 | 14.76          | 5.76           | 9.0         | 33,345          | 13,019          | 20,326       | 61%                |
| HOT WATER PUMP #2 | 14.76          | 5.76           | 9.0         | 33,345          | 13,019          | 20,326       | 61%                |
| TOTALS            | 14.76          | 5.76           | 9.0         | 66,690          | 26,038          | 40,652       | 61%                |

|                   | PROJECT<br>COST | REBATE | CUSTOMER<br>COST | ENERGY \$<br>SAVED | ROI | YTPB |
|-------------------|-----------------|--------|------------------|--------------------|-----|------|
| HOT WATER PUMP #1 | \$ 11,741       | \$-    | \$ 11,741        | \$ 3,354           | 29% | 3.5  |

# ENERGY MANAGEMENT SYSTEM

Energy management systems (EMS) conserve energy by adjusting operating hours and/or cycling equipment. EMS devices range from simple on/off time clocks controlling a single system, to sophisticated computerized controls that manage all the energy-consuming systems in a building.

The existing EMS is a pneumatic control



system that utilizes 7 day time clocks for occupied /unoccupied control. There are a total of 19 zones controlled by this system. The system is older and should eventually be upgraded even though the existing system is mostly operational. The system has zone control panels located throughout the building. RISE Engineering a Division of Thielsch Engineering found leaks in some of the units; however they do appear to be running properly. The system basically controls occupied and occupied timing. There were no identifiable control strategies employed to reset supply air temperature set points or the heating hot water loop temperature. A new EMS is recommended for additional energy savings however the cost of a new EMS system may be cost prohibitive. Depending on the level of the system that is deployed; install costs could vary from \$100K to \$300K or more. An interim recommendation would be to do a complete recommissioning of the existing system. This would cost be approximately \$10K-\$20K and would have a high return on investment.

# NEW EMS CONTROL FEATURES

### **Temperature/Time Optimization:**

These systems provide for the control of multiple functions and more sophisticated control of temperature setback/set forward. Inside and outside air temperature are monitored and used accordingly to vary the time of startup or setback of heating and/or air conditioning. These systems achieve additional savings by using the least amount of energy to produce comfortable conditions during occupancy.

Depending on the complexity of the system, an economizer cycle can also be incorporated. By controlling air dampers, this cycle brings outside air into the cooling system whenever possible.

### **Demand Control Systems:**

With these systems, all of the functions of temperature/time optimization and time clock controls are incorporated in a system that also controls electricity demand by cycling pre-selected loads on and off as demand approaches preset limits.

Typical interruptible loads are heating, ventilation and air conditioning (HVAC) systems; air compressor motors; and manufacturing processes that can readily be interrupted or delayed. In addition to generating energy savings by shutting off unnecessary loads, these systems reduce monthly peak demand charges on electric bills. Demand control systems

provide for a large number of control and monitoring points. They also incorporate features such as the ability to monitor fire and burglar alarms, log internal environmental conditions, record equipment run time, duty cycles, and track energy use.

# <u>RECOMMISSIONING</u>

Recommissioning is essentially the same process as commissioning, but applied to existing building's HVAC, controls, and electrical systems. When standardized maintenance and energy management procedures fail to fix chronic building problems, recommissioning provides a systematic approach for discovering and solving them. Recommissioning entails the examination of actual building equipment, systems operation and maintenance procedures for comparison to intended or design operation and maintenance procedures.



Building recommissioning can offer surprising paybacks. A detailed assessment of the costs and benefits of tuning up

buildings was conducted based on a survey of results from more than 40 tune-up projects. Results from the study confirmed that recommissioning can typically translate into energy savings of 5 to 15 percent.

Some of the equipment to be recommissioned would include. 68 Exhaust Fans 5 Packaged AC Units Classroom Unit Ventilators Core Classroom Sanyo AC Units Fin Tube Radiation Units Fan Coil Units

Recommissioning should be done after the energy measures are completed. Typical Costs are \$10K to \$20K however is dependent on equipment condition and cost will vary

# **KITCHEN HOOD MAKE UP AIR**

There appears to be some issues regarding Kitchen make up air and the hood operation. This should be further investigated.





RISE Engineering a Division of Thielsch Engineering 401 784-3700

Date 3/13/2009

# Gym Lighting

RISE Engineering is proposing the removal of the existing metal halide lighting and replacing it with high efficiency T8 lighting complete with lens covers as well as lens guarding. The new T8 lighting solution will provide a more uniform light distribution, provide longer lamp life as well as allow for better control of the space.

#### Gym Lighting

|              | EXISTING<br>KW | PROPOSED<br>KW | SAVED<br>KW | EXISTING<br>KWH | PROPOSED<br>KWH |        | PERCENT<br>SAVINGS |
|--------------|----------------|----------------|-------------|-----------------|-----------------|--------|--------------------|
| Gym Lighting | 32.81          | 26.66          | 6.2         | 118,116         | 62,384          | 55,732 | 52%                |
|              |                |                |             |                 |                 |        |                    |
| TOTALS       | 32.81          | 32.81          | 6.2         | 118,116         | 118,122         | 55,732 | 52%                |

|              | PROJECT<br>COST | REBATE | CUSTOMER<br>COST | ENERGY \$<br>SAVED | ROI    | YTPB |
|--------------|-----------------|--------|------------------|--------------------|--------|------|
| Gym Lighting | \$ 40,991.88    | \$-    | \$ 40,991.88     | \$ 10,032          | 24.19% | 3.9  |
|              |                 |        |                  |                    |        |      |

# SCOPE OF WORK

RISE ENGINEERING A DIVSION OF THIELSCH ENGINEERING INC will provide a turnkey installation including all material, labor and engineering to implement a VFD retrofit for the circulation pumps. The scope also includes Evaluation, Utility Rebate Submittals, Procurement, Project Management, Installation, Startup, Calibration, Debug, Documentation and Training.

# > ENERGY SAVINGS SUMMARY

| GAS ENERGY SAVINGS ANALYSIS         |                    |                    |                 |                    |
|-------------------------------------|--------------------|--------------------|-----------------|--------------------|
|                                     | EXISTING<br>THERMS | PROPOSED<br>THERMS | SAVED<br>THERMS | PERCENT<br>SAVINGS |
| BOILER REPLACEMENT                  | 76,945             | 65,737             | 11,208          | 15%                |
| HOT WATER TANK REPLACEMENT          | 7,152              | 4,517              | 2,635           | 37%                |
| GYM #1 CO2 CONTROL                  | 9,763              | 8,233              | 1,530           | 16%                |
| GYM #2 C02 CONTROL                  | 10,577             | 8,913              | 1,664           | 16%                |
| <b>GYM #1 DESTRATIFICATION FANS</b> | 8,233              | 6,569              | 1,664           | 20%                |
| <b>GYM #2 DESTRATIFICATION FANS</b> | 8,913              | 7,249              | 1,664           | 19%                |
| GYM #1 MOTION CONTROL               | 6,569              | 5,930              | 639             | 10%                |
| GYM #2 MOTION CONTROL               | 7,249              | 6,592              | 657             | 9%                 |
| TOTALS                              | 84,097             | 70,254             | 21,661          | 16%                |

• See attached spreadsheet for calculation details.

# Gym Lighting

|              | EXISTING<br>KW | PROPOSED<br>KW | SAVED<br>KW | EXISTING<br>KWH | PROPOSED<br>KWH | SAVED<br>KWH | PERCENT<br>SAVINGS |
|--------------|----------------|----------------|-------------|-----------------|-----------------|--------------|--------------------|
| Gym Lighting | 32.81          | 26.66          | 6.2         | 118,116         | 62,384          | 55,732       | 52%                |
|              |                |                |             |                 |                 |              |                    |
| TOTALS       | 32.81          | 32.81          | 6.2         | 118,116         | 118,122         | 55,732       | 52%                |

#### ELECTRIC ENERGY SAVINGS ANALYSIS

|                   | EXISTING<br>KW | PROPOSED<br>KW | SAVED<br>KW | EXISTING<br>KWH | PROPOSED<br>KWH |        | PERCENT<br>SAVINGS |
|-------------------|----------------|----------------|-------------|-----------------|-----------------|--------|--------------------|
| HOT WATER PUMP #1 | 14.76          | 5.76           | 9.0         | 33,345          | 13,019          | 20,326 | 61%                |
| HOT WATER PUMP #2 | 14.76          | 5.76           | 9.0         | 33,345          | 13,019          | 20,326 | 61%                |
| TOTALS            | 14.76          | 5.76           | 9.0         | 66,690          | 26,038          | 40,652 | 61%                |

# > <u>COST BENEFIT ANALYSIS</u>

| Note                                                                                          | Electric Savings Summary |                            |                  |                       |                     |                 |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------|----------------------------|------------------|-----------------------|---------------------|-----------------|--|--|--|--|--|--|
| Lighting savings includes \$ 987 from<br>net heating savings,and \$ 387 from Maint<br>savings | PROJECT<br>COST          | REBATE                     | CUSTOMER<br>COST | ENERGY \$<br>SAVED    | ROI                 | ΥТРВ            |  |  |  |  |  |  |
| HOT WATER PUMP #1                                                                             | \$ 11,741                |                            | \$ 11,741        | \$ 3,659              | 31%                 | 3.2             |  |  |  |  |  |  |
| HOT WATER PUMP #2                                                                             | \$ 11,741                |                            | \$ 11,741        | \$ 3,659              | 31%                 | 3.2             |  |  |  |  |  |  |
| GYM Lighting                                                                                  | \$ 40,992                |                            | \$ 40,992        | \$ 11,406             | 28%                 | 3.6             |  |  |  |  |  |  |
| Total NSTAR Electric Incentive                                                                |                          | \$ 28,916                  |                  |                       |                     |                 |  |  |  |  |  |  |
| TOTALS                                                                                        | \$ 64,474                | \$ 28,916                  | \$ 35,558        | \$ 18,723             | 53%                 | 1.9             |  |  |  |  |  |  |
|                                                                                               |                          |                            | GAS Savi         | ngs Summai            | ſy                  |                 |  |  |  |  |  |  |
|                                                                                               | PROJECT<br>COST          | REBATE                     | CUSTOMER<br>COST | ENERGY \$<br>SAVED    | ROI                 | YTPB            |  |  |  |  |  |  |
| BOILER REPLACEMENT                                                                            | \$ 255,751               | \$ 16,476                  | \$ 239,276       | \$ 13,449             | 6%                  | 17.8            |  |  |  |  |  |  |
| HOT WATER TANK REPLACEMENT                                                                    | \$ 44,367                | \$ 3,873                   | \$ 40,494        | \$ 3,162              | 8%                  | 12.8            |  |  |  |  |  |  |
| <b>GYM #1 DESTRATIFICATION FANS</b>                                                           | \$ 11,109                | \$ 2,446                   | \$ 8,663         | \$ 1,997              | 23%                 | 4.3             |  |  |  |  |  |  |
| GYM #2 DESTRATIFICATION FANS                                                                  | \$ 11,109                | \$ 2,446                   | \$ 8,663         | \$ 1,997              | 23%                 | 4.3             |  |  |  |  |  |  |
| GYM #1 CO2 CONTROL                                                                            | \$ 14,835                | \$ 2,249                   | \$ 12,586        | \$ 1,836              | 15%                 | 6.9             |  |  |  |  |  |  |
| GYM #2 C02 CONTROL                                                                            | \$ 13,800                | \$ 2,446                   | \$ 11,354        | \$ 1,836              | 16%                 | 6.2             |  |  |  |  |  |  |
| GYM #1 MOTION CONTROL                                                                         | \$ 6,845                 | \$ 2,532                   | \$ 4,313         | \$ 1,060              | 25%                 | 4.1             |  |  |  |  |  |  |
| GYM #2 MOTION CONTROL                                                                         | \$ 6,845                 | \$ 2,532                   | \$ 4,313         | \$ 1,090              | 25%                 | 4.0             |  |  |  |  |  |  |
| Total NSTAR Gas Incentive                                                                     |                          | \$ 35,000                  |                  |                       |                     |                 |  |  |  |  |  |  |
| TOTALS                                                                                        | \$ 364,661               | \$ 49,650                  | \$ 315,011       | \$ 26,427             | 8%                  | 11.9            |  |  |  |  |  |  |
|                                                                                               |                          |                            |                  |                       |                     |                 |  |  |  |  |  |  |
| NSTAR Electric only Financ                                                                    | ing Option               | Est.                       |                  | NSTAR G               | AS Project<br>NSTAR | Cust.           |  |  |  |  |  |  |
|                                                                                               | Monthly<br>Payment       | Est.<br>Monthly<br>Savings |                  | Total<br>Project Cost | Gas<br>Incentive    | Project<br>Cost |  |  |  |  |  |  |
| 24 Month Financing @ 0% interest                                                              | \$ 1,481.57              | \$ 1,560.26                | Gas Project      | \$ 364,661.00         | \$ 34,999.55        | \$ 329,661.45   |  |  |  |  |  |  |

# **NSTAR Off Bill Financing**

NSTAR Electric offers off bill financing to their customers. This allows the customers to move forward with a project with no up-front capital investment

### **<u>RISE Engineering a Division of Thielsch Engineering, Inc Payment Terms</u>**

RISE Engineering will require the following payment schedule on any portion of this project that is not being financed through NSTAR Electric.

| 25% Down Payment due at the time of order                  | \$ 82,415.25 |
|------------------------------------------------------------|--------------|
| 25% Due upon arrival of Boilers to job site                | \$ 82,415.25 |
| 25% Due upon arrival of remainder of equipment to job site | \$82,415.25  |
| 15% Due upon completion of installation                    | \$ 49,449.15 |
| 10% Due upon completion of commissioning and start up      | \$ 32,966.15 |

\*See RISE Engineering Contract for all remaining terms and conditions.

# ENVIRONMENTAL IMPACT

Saving electrical energy helps our environment by reducing the greenhouse gases that are emitted to our atmosphere, from the burning of the fossil fuels that create our electricity and heat our buildings. This is an estimate of the green house gas emissions saved by this energy conservation measure.

| ENVIRONMENTAL IMPA                            | СТ      |
|-----------------------------------------------|---------|
|                                               |         |
| THERMS SAVED                                  | 21,661  |
| KWH SAVED                                     | 96,384  |
| GREEN HOUSE GAS IMPACT                        |         |
| <b>CO<sup>2</sup> EMISSIONS REDUCED</b> (Lbs) | 388,372 |
| <b>N<sup>2</sup>0</b> EMISSIONS REDUCED (Lbs) | 0.36    |
| NH4 EMISSIONS REDUCED (Lbs)                   | 0.65    |
| EQUILIVANT SAVINGS                            |         |
| Cars Removed From The Road                    | 34      |
| Homes Removed                                 | 8       |
| Computers Removed                             | 96      |
| # of trees saved                              | 374     |
| Acres of forest preserved from deforestation  | 1.23    |

# ► <u>WARRANTY</u>

12 months on material

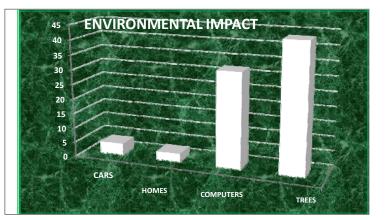
#### **NSTAR Rebate Calculations**

| Customer:     | Carve        | er M       | S &       | HS       |                  |                | Existing        | g Boiler Ef |              |              |                   | Condensing B | oiler Efficiency    | ]                  |     |                      |  |
|---------------|--------------|------------|-----------|----------|------------------|----------------|-----------------|-------------|--------------|--------------|-------------------|--------------|---------------------|--------------------|-----|----------------------|--|
| Address       | 60 S I       | Mea        | dow       | / Rd     |                  |                | OA (F)          |             | Eff (%)      |              |                   | OA (F)       | Eff (%)             |                    |     |                      |  |
|               | Carve        | ∍r, N      | 1A 0      | 2330     |                  |                | 20              |             | 75           |              |                   | 20           | 86                  |                    |     |                      |  |
|               |              |            |           |          |                  |                | <b>65</b>       |             | 75           |              |                   | <b>65</b>    | 94                  |                    |     |                      |  |
| Account#      | 1374-        | <b>601</b> | -002      | 27       |                  |                |                 |             |              |              |                   |              |                     | -                  |     |                      |  |
|               |              |            |           |          |                  |                | Baseline        |             |              |              | 55                |              |                     |                    |     |                      |  |
| Balance Point |              | 60         |           |          |                  |                |                 |             | egree Hour   |              | 0.415             | 76945        | 76943               | 2                  |     |                      |  |
| Fuel Cost     | \$ 1.2       | 0          |           |          |                  |                |                 |             | nitted to of | ther         | 5600              |              |                     |                    |     |                      |  |
|               |              |            |           |          |                  |                |                 | erms per h  |              |              | 0.6               |              |                     |                    |     |                      |  |
|               |              |            |           |          |                  |                | Base The        | erms Adju   | sted for ef  | ficiency     | 0.5               |              |                     |                    |     |                      |  |
|               |              |            |           |          |                  |                |                 |             |              |              |                   |              |                     |                    |     |                      |  |
|               | Weather Data |            |           |          |                  |                |                 | Base        |              | rd Boilers   |                   | Condensing   |                     | Cost Savings       |     |                      |  |
| Temp          |              |            |           |          | Occ              | Deg.           | Heating         | Therms      | Eff          | Fuel Use     | Eff               | Fuel Use     | Fuel Saving         | Fuel Cost          | S   | avings               |  |
| From          | То           |            | -         | WB       | Hours            | fr. Base       | deg hrs         |             | %            | Therms       | %                 | Therms       | Therms              | \$/Therm           |     | \$                   |  |
|               |              |            | 91        | 75       | 3.29             |                |                 |             | 75%          | 0            | 94%               | 0            |                     | \$ 1.20            |     | -                    |  |
|               |              |            | 87        | 72       | 45.09            |                |                 |             | 75%          | 0            | 94%               | 0            | 0                   | \$ 1.20            | \$  | -                    |  |
|               |              | 85         | <b>82</b> | 67       | 162.16           |                |                 |             | 75%          | 0            | 94%               | 0            | 0                   | \$ 1.20            | \$  | -                    |  |
|               |              |            | 77        | 66       | 349.85           |                |                 |             | 75%          | 0            | 94%               | 0            | 0                   | \$ 1.20            | \$  | -                    |  |
|               |              | 75         | 72        | 64       | 564.81           |                |                 |             | 75%          | 0            | 94%               | 0            | 0                   | \$ 1.20            | \$  | -                    |  |
|               |              |            | 67        | 61       | 725.47           |                |                 |             | 75%          | 0            | 94%               | 0            | 0                   | \$ 1.20            | \$  | -                    |  |
|               |              |            | 62        | 57       | 810.24           |                |                 |             | 75%          | 0            | 94%               | 0            | 0                   |                    | \$  | -                    |  |
|               |              | 60         | 58        | 52       | 755.52           | 7.00           | 4.070           | 0.44        | 75%          | 0            | 93%               | 0            | 0                   | \$ 1.20            | \$  | -                    |  |
|               |              | 55<br>50   | 53        | 47       | 711.27           | 7.00           | 4,979           | 341<br>325  | 75%          | 3210         | 92%               | 2617         | 593                 | \$ 1.20            | \$  | 711.7                |  |
|               |              | 50<br>45   | 47<br>42  | 42<br>38 | 678.70<br>698.23 | 13.00<br>18.00 | 8,823<br>12,568 | 325         | 75%<br>75%   | 5316<br>7401 | <u>91%</u><br>90% | 4381<br>6167 | <u>935</u><br>1.233 | \$ 1.20<br>\$ 1.20 |     | 1,121.6 <sup>2</sup> |  |
|               |              | 45<br>40   | 37        | 33       | 764.83           | 23.00          | 12,566          | 335         | 75%          | 10223        | <u> </u>          | 8615         | 1,233               | \$ 1.20<br>\$ 1.20 |     |                      |  |
|               |              | 40<br>35   | 33        | 33<br>29 | 765.07           | 23.00          | 20,657          | 367         | 75%          | 11919        | <u>88%</u>        | 10158        | 1,000               | \$ 1.20<br>\$ 1.20 |     | 1,929.67<br>2,112.9  |  |
|               |              | 30         | 28        | 29       | 572.10           | 32.00          | 18,307          | 274         | 75%          | 10496        | <u> </u>          | 9048         | 1,701               | \$ 1.20<br>\$ 1.20 |     | 1,737.2              |  |
|               |              | 25         | 23        | 19       | 418.50           | 37.00          | 15,485          | 201         | 75%          | 8836         | 86%               | 7705         | 1,130               | \$ 1.20            |     | 1,356.17             |  |
|               |              | 20         | 18        | 15       | 316.83           | 42.00          | 13,307          | 152         | 75%          | 7566         | 86%               | 6598         | 968                 | \$ 1.20            |     | 1,161.24             |  |
|               |              | 15         | 13        | 10       | 216.84           | 47.00          | 10,191          | 102         | 75%          | 5778         | 86%               | 5039         | 739                 | \$ 1.20            | \$  | 886.84               |  |
|               | -            | 10         | 8         | 6        | 126.66           | 52.00          | 6,586           | 61          | 75%          | 3725         | 86%               | 3249         | 477                 | \$ 1.20            | \$  | 571.8 <sup>4</sup>   |  |
|               | 0            | 5          | 3         | 1        | 50.68            | 57.00          | 2,889           | 24          | 75%          | 1631         | 86%               | 1422         | 209                 | \$ 1.20            | \$  | 250.32               |  |
|               | ·5           | 0          | -2        | -4       | 19.75            | 62.00          | 1,225           | 9           | 75%          | 690          | 86%               | 602          | 88                  | \$ 1.20            | \$  | 105.93               |  |
| -1            |              | -5         | -7        | -9       | 4.01             | 67.00          | 269             | 2           | 75%          | 151          | 86%               | 132          | 19                  |                    | \$  | 23.2                 |  |
|               |              | -          | -11       | -12      | 0.10             | 71.00          | 7               | - 0         | 75%          | 4            | 86%               |              | 1                   | \$ 1.20            | \$  | 0.6                  |  |
| _             |              |            |           |          | -                |                |                 |             |              |              |                   | -            |                     |                    |     |                      |  |
| Totals        |              |            |           |          | 8760             | HDhrs          | 132,884         |             |              | 76945        |                   | 65,737       | 11,208              |                    | \$1 | 3,449.45             |  |

Please Note: This spreadsheet is not for general use and is the property of Action Energy LLC. All savings estimates and rebates must be considered estimated until reviewed and approved by the utility.

Data and assumptions in this spreadsheet are supplied by customer and has not been independently verfied. Any Questions Regarding this spreadsheet please contact Bruce Shaffer at Action Energy 508-837-6594

bruce@actionenergyusa.com


|        |        |            |               | Hot w | vat | ter Tar  | nk Savings |                    |                  |                 |     |         |
|--------|--------|------------|---------------|-------|-----|----------|------------|--------------------|------------------|-----------------|-----|---------|
| Month  | Therms | System Eff | Therms @ 100% |       |     |          |            | Proposed<br>Therms | Proposed<br>Cost | Therms<br>Saved | \$  | Saved   |
| Jan    | 650    | 60%        | 390           | 1.2   | \$  | 780.00   | 95%        | 410.5              | \$<br>492.63     | 239.5           | \$  | 287.37  |
| Feb    | 650    | 60%        | 390           | 1.2   | \$  | 780.00   | 95%        | 410.5              | \$<br>492.63     | 239.5           | \$  | 287.37  |
| Mar    | 650    | 60%        | 390           | 1.2   | \$  | 780.00   | 95%        | 410.5              | \$<br>492.63     | 239.5           | \$  | 287.37  |
| apr    | 650    | 60%        | 390           | 1.2   | \$  | 780.00   | 95%        | 410.5              | \$<br>492.63     | 239.5           | \$  | 287.37  |
| may    | 650    | 60%        | 390           | 1.2   | \$  | 780.00   | 95%        | 410.5              | \$<br>492.63     | 239.5           | \$  | 287.37  |
| Jun    | 416    | 60%        | 249.6         | 1.2   | \$  | 499.20   | 95%        | 262.7              | \$<br>315.28     | 153.3           | \$  | 183.92  |
| July   | 470    | 60%        | 282           | 1.2   | \$  | 564.00   | 95%        | 296.8              | \$<br>356.21     | 173.2           | \$  | 207.79  |
| Aug    | 514    | 60%        | 308.4         | 1.2   | \$  | 616.80   | 95%        | 324.6              | \$<br>389.56     | 189.4           | \$  | 227.24  |
| sept   | 560    | 60%        | 336           | 1.2   | \$  | 672.00   | 95%        | 353.7              | \$<br>424.42     | 206.3           | \$  | 247.58  |
| Oct    | 642    | 60%        | 385.2         | 1.2   | \$  | 770.40   | 95%        | 405.5              | \$<br>486.57     | 236.5           | \$  | 283.83  |
| Nov    | 650    | 60%        | 390           | 1.2   | \$  | 780.00   | 95%        | 410.5              | \$<br>492.63     | 239.5           | \$  | 287.37  |
| Dec    | 650    | 60%        | 390           | 1.2   | \$  | 780.00   | 95%        | 410.5              | \$<br>492.63     | 239.5           | \$  | 287.37  |
| Totals | 7152   |            | 4291.2        |       | \$  | 8,582.40 |            | 4517.1             | \$<br>5,420.46   | 2634.9          | \$3 | ,161.94 |

|                              | COST BENEFIT ANALYSIS |                 |    |       |                  |         |                    |        |     |      |
|------------------------------|-----------------------|-----------------|----|-------|------------------|---------|--------------------|--------|-----|------|
|                              | Ρ                     | PROJECT<br>COST |    | EBATE | CUSTOMER<br>COST |         | ENERGY \$<br>SAVED |        | ROI | YTPB |
| BOILER REPLACEMENT           | \$                    | 255,751         | \$ | -     | \$               | 255,751 | \$                 | 13,449 | 5%  | 19.0 |
| HOT WATER TANK REPLACEMENT   | \$                    | 44,367          | \$ | -     | \$               | 44,367  | \$                 | 3,162  | 7%  | 14.0 |
| GYM #1 DESTRATIFICATION FANS | \$                    | 11,109          | \$ | -     | \$               | 11,109  | \$                 | 1,997  | 18% | 5.6  |
| GYM #2 DESTRATIFICATION FANS | \$                    | 11,109          | \$ | -     | \$               | 11,109  | \$                 | 1,997  | 18% | 5.6  |
| GYM #1 CO2 CONTROL           | \$                    | 14,835          | \$ | -     | \$               | 14,835  | \$                 | 1,836  | 12% | 8.1  |
| GYM #2 C02 CONTROL           | \$                    | 13,800          | \$ | -     | \$               | 13,800  | \$                 | 1,836  | 13% | 7.5  |
| GYM #1 MOTION CONTROL        | \$                    | 6,845           | \$ | -     | \$               | 6,845   | \$                 | 1,060  | 15% | 6.5  |
| GYM #2 MOTION CONTROL        | \$                    | 6,845           | \$ | -     | \$               | 6,845   | \$                 | 1,090  | 16% | 6.3  |
| HOT WATER PUMP #1            | \$                    | 11,741          | \$ | -     | \$               | 11,741  | \$                 | 3,659  | 31% | 3.2  |
| HOT WATER PUMP #2            | \$                    | 11,741          | \$ | -     | \$               | 11,741  | \$                 | 3,659  | 31% | 3.2  |
| TOTALS                       | \$                    | 388,143         | \$ | -     | \$               | 388,143 | \$                 | 33,744 | 9%  | 11.5 |

| GAS ENERGY SAVINGS ANALYSIS  |                    |                    |                 |                    |  |  |  |  |
|------------------------------|--------------------|--------------------|-----------------|--------------------|--|--|--|--|
|                              | EXISTING<br>THERMS | PROPOSED<br>THERMS | SAVED<br>THERMS | PERCENT<br>SAVINGS |  |  |  |  |
| BOILER REPLACEMENT           | 76,945             | 65,737             | 11,208          | 15%                |  |  |  |  |
| HOT WATER TANK REPLACEMENT   | 7,152              | 4,517              | 2,635           | 37%                |  |  |  |  |
| GYM #1 CO2 CONTROL           | 9,763              | 8,233              | 1,530           | 16%                |  |  |  |  |
| GYM #2 C02 CONTROL           | 10,577             | 8,913              | 1,664           | 16%                |  |  |  |  |
| GYM #1 DESTRATIFICATION FANS | 8,233              | 6,569              | 1,664           | 20%                |  |  |  |  |
| GYM #2 DESTRATIFICATION FANS | 8,913              | 7,249              | 1,664           | 19%                |  |  |  |  |
| GYM #1 MOTION CONTROL        | 6,569              | 5,930              | 639             | 10%                |  |  |  |  |
| GYM #2 MOTION CONTROL        | 7,249              | 6,592              | 657             | 9%                 |  |  |  |  |
| TOTALS                       | 135,401            | 113,740            | 21,661          | 16%                |  |  |  |  |

| ELECTRIC ENERGY SAVINGS ANALYSIS                                 |       |      |     |        |        |        |     |  |  |  |
|------------------------------------------------------------------|-------|------|-----|--------|--------|--------|-----|--|--|--|
| EXISTING KW PROPOSED SAVED EXISTING PROPOSED SAVED KWH SAVED KWH |       |      |     |        |        |        |     |  |  |  |
| HOT WATER PUMP #1                                                | 14.76 | 5.76 | 9.0 | 33,345 | 13,019 | 20,326 | 61% |  |  |  |
| HOT WATER PUMP #2                                                | 14.76 | 5.76 | 9.0 | 33,345 | 13,019 | 20,326 | 61% |  |  |  |
| TOTALS                                                           | 14.76 | 5.76 | 9.0 | 66,690 | 26,038 | 40,652 | 61% |  |  |  |

| ENVIRONMENTAL IMPACT                         |         |  |  |  |  |  |  |
|----------------------------------------------|---------|--|--|--|--|--|--|
|                                              | 24.664  |  |  |  |  |  |  |
| THERMS SAVED                                 | 21,661  |  |  |  |  |  |  |
| KWH SAVED                                    | 26,038  |  |  |  |  |  |  |
| GREEN HOUSE GAS IMPACT                       |         |  |  |  |  |  |  |
| CO <sup>2</sup> EMISSIONS REDUCED (Lbs)      | 289,887 |  |  |  |  |  |  |
| N <sup>2</sup> 0 EMISSIONS REDUCED (Lbs)     | 0.10    |  |  |  |  |  |  |
| NH4 EMISSIONS REDUCED (Lbs)                  | 0.17    |  |  |  |  |  |  |
| EQUILIVANT SAVINGS                           |         |  |  |  |  |  |  |
| Cars Removed From The Road                   | 25      |  |  |  |  |  |  |
| Homes Removed                                | 2       |  |  |  |  |  |  |
| Computers Removed                            | 26      |  |  |  |  |  |  |
| # of trees saved                             | 279     |  |  |  |  |  |  |
| Acres of forest preserved from deforestation | 0.92    |  |  |  |  |  |  |



| Gym Hours           | 7AM         | 9PM |                   |
|---------------------|-------------|-----|-------------------|
| Hours/day           | 13          |     |                   |
| heating days        | 120         |     | Oct 15th May 15th |
| Total Heating Hours | 1560        |     |                   |
| Standard Hours      | 4853        |     |                   |
| Hours Ratio         | 0.321450649 |     |                   |
| Estimated Therms    | 6569        |     |                   |
| HDH                 | 54,677      |     |                   |
| Therms/HDH          | 0.12        |     |                   |

180days- 60# of non heating days

| Carver Gym #1 |           |            |        |        |        |           |             |               |             |                      |                  |          |             |               |                |             |                         |
|---------------|-----------|------------|--------|--------|--------|-----------|-------------|---------------|-------------|----------------------|------------------|----------|-------------|---------------|----------------|-------------|-------------------------|
|               | EXISTING  |            |        |        |        |           |             | PROPOSED      |             |                      |                  |          |             |               |                |             |                         |
| OAT           | Room Temp | Flow (CFM) | HDH    | Therms | Deta T | BTU's/hr  | Total HRS   | heating hours | BTU's       | <b>Temp Set Back</b> | Set Back Delta T | BTU's/Hr | BTU's       | % Un Occupied | Proposed BTU's | Saved BTU's |                         |
| 90            | 70        | 12,645     |        | 0      | -20    |           |             |               |             |                      |                  |          |             |               |                |             |                         |
| 8             | 5 70      | 12,645     |        | 0      | -15    |           |             |               |             |                      |                  |          |             |               |                |             |                         |
| 8             | 70        | 12,645     |        | 0      | -10    |           |             |               |             |                      |                  |          |             |               |                |             |                         |
| 7             | 5 70      | 12,645     |        | 0      | -5     |           |             |               |             |                      |                  |          |             |               |                |             |                         |
| 70            | 70        | 12,645     |        | 0      | 0      |           |             |               |             |                      |                  |          |             |               |                |             |                         |
| 6             | 5 70      | 12,645     |        | 0      | 5      |           |             |               |             |                      |                  |          |             |               |                |             |                         |
| 6             | 70        | 12,645     |        | 0      | 10     |           |             |               |             |                      |                  |          |             |               |                |             |                         |
| 5             | 5 70      | 12,645     |        | 0      | 15     |           |             |               |             |                      |                  |          |             |               |                |             |                         |
| 50            | 70        | 12,645     | 10,302 | 1238   | 20     | 273,132   | 641         | 206           | 56,278,812  | 10                   | 10               | 136,566  | 28,139,406  | 30%           | 47,836,990     | 8,441,822   | When heating is require |
| 4             | 5 70      | 12,645     | 9,967  | 1197   | 25     | 341,415   | 689         | 221           | 75,616,423  | 10                   | 15               | 204,849  | 45,369,854  | 30%           | 66,542,452     | 9,073,971   |                         |
| 40            | 70        | 12,645     | 8,885  | 1067   | 30     | 409,698   | 691         | 222           | 91,003,102  | 10                   | 20               | 273,132  | 60,668,735  | 30%           | 81,902,792     | 9,100,310   |                         |
| 3             | 5 70      | 12,645     | 10,902 | 1310   | 35     | 477,981   | 969         | 311           | 148,884,236 | 10                   | 25               | 341,415  | 106,345,883 | 30%           | 136,122,730    | 12,761,506  |                         |
| 30            | ) 70      | 12,645     | 7,503  | 901    | 40     | 546,264   | 778         | 250           | 136,614,402 | 10                   | 30               | 409,698  | 102,460,801 | 30%           | 126,368,322    | 10,246,080  |                         |
| 2             | 5 70      | 12,645     | 4,131  | 496    | 45     | 614,547   | 514         | 165           | 101,538,917 | 10                   | 35               | 477,981  | 78,974,714  | 30%           | 94,769,656     | 6,769,261   |                         |
| 20            | 70        | 12,645     | 1,659  | 199    | 50     | 682,830   | 258         | 83            | 56,630,006  | 10                   | 40               | 546,264  | 45,304,005  | 30%           | 53,232,206     | 3,397,800   |                         |
| 1             | 5 70      | 12,645     | 1,128  | 136    | 55     | 751,113   | 234         | 75            | 56,498,308  | 10                   | 45               | 614,547  | 46,225,888  | 30%           | 53,416,582     | 3,081,726   |                         |
| 1(            | 70        | 12,645     | 148    | 18     | 60     | 819,396   | 46          | 15            | 12,116,187  | 10                   | 50               | 682,830  | 10,096,823  | 30%           | 11,510,378     | 605,809     |                         |
|               | 5 70      | 12,645     | 53     | 6      | 65     | 887,679   | 33          | 11            | 9,416,385   | 10                   | 55               | 751,113  | 7,967,710   | 30%           | 8,981,782      | 434,602     |                         |
| (             | 70        | 12,645     | -      | 0      | 70     |           |             |               |             |                      |                  |          |             |               |                |             |                         |
|               |           |            | 54,677 | 6569   |        | 5,804,055 | Total BTU's |               | 744,596,778 |                      |                  |          | 531,553,818 |               | 680,683,890    | 63,912,888  | -                       |
|               |           |            |        |        |        |           | Therms      |               | 7,445.97    |                      |                  |          |             |               | 6,806.84       | 639.13      |                         |

#### ELECTRICITY SAVINGS

| Existing           |      |  |  |  |  |  |  |  |
|--------------------|------|--|--|--|--|--|--|--|
| HP                 | 6    |  |  |  |  |  |  |  |
| KW                 | 3.8  |  |  |  |  |  |  |  |
| Hours of operation | 1560 |  |  |  |  |  |  |  |
| KWH                | 5928 |  |  |  |  |  |  |  |

| Proposed |        |  |  |  |  |  |
|----------|--------|--|--|--|--|--|
| KW       | 3.8    |  |  |  |  |  |
| Hours    | 1092   |  |  |  |  |  |
| KWH      | 4149.6 |  |  |  |  |  |

|     | Saved |        |
|-----|-------|--------|
| KWH |       | 1778.4 |

| Gym Hours           | 7AM        | 8PM |                   |
|---------------------|------------|-----|-------------------|
| Hours/day           | 13         |     |                   |
| heating days        | 120        |     | Oct 15th May 15th |
| Total Heating Hours | 1560       |     |                   |
| Standard Hours      | 4853       |     |                   |
| Hours Ratio         | 0.32145065 |     |                   |
| Therms              | 7249       |     |                   |
| HDH                 | 54,677     |     |                   |
| Therms/HDH          | 0.13       |     |                   |

180days- 60# of non heating days

|     |           |            |        |        |        |           | C           | arver Gym #2  | 2           |               |              |          |             |               |                |             |
|-----|-----------|------------|--------|--------|--------|-----------|-------------|---------------|-------------|---------------|--------------|----------|-------------|---------------|----------------|-------------|
|     | EXISTING  |            |        |        |        |           |             |               |             |               |              | PROPO    |             |               |                |             |
| OAT | Room Temp | Flow (CFM) | HDH    | Therms | Deta T | BTU's/hr  | Total HRS   | heating hours | BTU's       | Temp Set Back | t Back Delta | BTU's/Hr | BTU's       | % Un Occupied | Proposed BTU's | Saved BTU's |
| 90  | 70        | 13,000     |        | 0      | -20    |           |             |               |             |               |              |          |             |               |                |             |
| 85  | 70        | 13,000     |        | 0      | -15    |           |             |               |             |               |              |          |             |               |                |             |
| 80  | 70        | 13,000     |        | 0      | -10    |           |             |               |             |               |              |          |             |               |                |             |
| 75  | 70        | 13,000     |        | 0      | -5     |           |             |               |             |               |              |          |             |               |                |             |
| 70  | 70        | 13,000     |        | 0      | 0      |           |             |               |             |               |              |          |             |               |                |             |
| 65  | 70        | 13,000     |        | 0      | 5      |           |             |               |             |               |              |          |             |               |                |             |
| 60  | 70        | 13,000     |        | 0      | 10     |           |             |               |             |               |              |          |             |               |                |             |
| 55  | 70        | 13,000     |        | 0      | 15     |           |             |               |             |               |              |          |             |               |                |             |
| 50  | 70        | 13,000     | 10,302 | 1366   | 20     | 280,800   | 641         | 206           | 57,858,802  | 10            | 10           | 140,400  | 28,929,401  | 30%           | 49,179,982     | 8,678,820   |
| 45  | 70        | 13,000     | 9,967  | 1321   | 25     | 351,000   | 689         | 221           | 77,739,304  | 10            | 15           | 210,600  | 46,643,582  | 30%           | 68,410,587     | 9,328,716   |
| 40  | 70        | 13,000     | 8,885  | 1178   | 30     | 421,200   | 691         | 222           | 93,557,954  | 10            | 20           | 280,800  | 62,371,970  | 30%           | 84,202,159     | 9,355,795   |
| 35  | 70        | 13,000     | 10,902 | 1445   | 35     | 491,400   | 969         | 311           | 153,064,063 | 10            | 25           | 351,000  | 109,331,473 | 30%           | 139,944,286    | 13,119,777  |
| 30  | 70        | 13,000     | 7,503  | 995    | 40     | 561,600   | 778         | 250           | 140,449,761 | 10            | 30           | 421,200  | 105,337,320 | 30%           | 129,916,029    | 10,533,732  |
| 25  | 70        | 13,000     | 4,131  | 548    | 45     | 631,800   | 514         | 165           | 104,389,555 | 10            | 35           | 491,400  | 81,191,876  | 30%           | 97,430,252     | 6,959,304   |
| 20  | 70        | 13,000     | 1,659  | 220    | 50     | 702,000   | 258         | 83            | 58,219,856  | 10            | 40           | 561,600  | 46,575,885  | 30%           | 54,726,664     | 3,493,191   |
| 15  | 70        | 13,000     | 1,128  | 150    | 55     | 772,200   | 234         | 75            | 58,084,461  | 10            | 45           | 631,800  | 47,523,650  | 30%           | 54,916,217     | 3,168,243   |
| 10  | 70        | 13,000     | 148    | 20     | 60     | 842,400   | 46          | 15            | 12,456,341  | 10            | 50           | 702,000  | 10,380,284  | 30%           | 11,833,524     | 622,817     |
| 5   | 70        | 13,000     | 53     | 7      | 65     | 912,600   | 33          | 11            | 9,680,743   | 10            | 55           | 772,200  | 8,191,398   | 30%           | 9,233,940      | 446,804     |
| 0   | 70        | 13,000     | -      | 0      | 70     |           |             |               |             |               |              |          |             |               |                |             |
|     |           |            | 54,677 | 7249   |        | 5,967,000 | Total BTU's | 6             | 765,500,840 |               |              |          | 546,476,840 |               | 699,793,640    | 65,707,200  |
|     |           |            |        |        |        |           | Therms      |               | 7,655.01    |               |              |          |             |               | 6,997.94       | 657.07      |

#### ELECTRICITY SAVINGS

| Existing           |      |
|--------------------|------|
| HP                 | 6    |
| KW                 | 3.9  |
| Hours of operation | 1560 |
| KWH                | 6084 |

| Proposed |        |
|----------|--------|
| KW       | 3.9    |
| Hours    | 1092   |
| KWH      | 4258.8 |

| Save | ed     |
|------|--------|
| KWH  | 1825.2 |

| 1 4                           | 100       |           |
|-------------------------------|-----------|-----------|
| Length                        | 100       |           |
| Width                         | 60        |           |
| Height                        | 20        |           |
| CUBIC Feet                    | 120000    |           |
| Roof Sq ft                    | 6000      |           |
| fans effective Sq             | 40000     |           |
| # Fans Required               | 3         |           |
| Roof Heat Trans Value         | 0.8       | Estimated |
| Roof Area                     | 6000      |           |
| Temp difference roof to floor | 20        | F         |
| Hours                         | 1560      |           |
| heating efficiency            | 90%       |           |
| BTU's Saved                   | 166400000 |           |
| Therms                        | 1664      |           |
| Therm Cost                    | 1.2       |           |
| \$ saved                      | \$ 1,997  |           |

Use destratification fan to improve air circulation

Over head heating, and process waste heat can migrate to the ceiling area of a plant and create a temperature difference demanding additional heating of the floor area of a plant. This is typical of plants with ceilings greater than 15 feet. The use of destratification fans or other methods to improve interior air circulation can reduce heating costs. Industry standards for destratification using 10,000 CFM circulating fans show that a fan can destratify 40,000 ft<sup>3</sup> of building space in 15 minutes. The number of fans required is found by **FN = BV/FV, FN** is number of fans, **BV** is building volume, ft<sup>3</sup>, **FV** is volume of air moved per fan. Destratification will reduce the temperature at the roof, and thus the heat lost through heat transmission from the roof.

 $AES = \frac{U \times A \times DT \times HY}{\eta}$ 

| Customer           | Carver Schools       |     | The second se |
|--------------------|----------------------|-----|-----------------------------------------------------------------------------------------------------------------|
| Tag Name           | Hot Water Pump #1    |     |                                                                                                                 |
| Date               | 3/13/2009            |     |                                                                                                                 |
| ECM Measure        | VFD & Motor Retrofit |     |                                                                                                                 |
| Hours of Operation | 2259                 |     |                                                                                                                 |
| Number Of Pumps    | 1                    |     | Indicates the number of pumps either 1= Primary, or 2=Primary and Backup                                        |
| Audit ID#          |                      |     |                                                                                                                 |
| Utility            | NSTAR                |     |                                                                                                                 |
| Voltage            | 460                  |     |                                                                                                                 |
| Transformer Size   | 1000                 | KVA |                                                                                                                 |
| Location           | Mechanical Room      |     |                                                                                                                 |

Base Case

| Cat # | HP | Efficiency | Voltage | RPM  | Frame | Times<br>Rewound | Insulation<br>Class                           | Rewind Adj<br>Eff                                   | Enclosure                                               |
|-------|----|------------|---------|------|-------|------------------|-----------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| E660A | 20 | 0.875      | 230/460 | 1760 | 256T  | 0                | В                                             | 0.88                                                | OPSB                                                    |
|       |    |            |         |      |       |                  | Cat # HP Efficiency Voltage RPM Prame Rewound | Cat # HP Efficiency Voltage RPM Frame Rewound Class | Cat # HP Efficiency Voltage RPM Frame Rewound Class Eff |

| Pump Information |      |             |      |          |           |          |                  |
|------------------|------|-------------|------|----------|-----------|----------|------------------|
| Pump Manf        | GPM  | Туре        | Head | Pump EFF | Cal'd BHP | Cal'd kW | Motor<br>loading |
| Armstrong        | 650  | End suction | 60   | 65%      | 15.15     | 14.76    | 76%              |
|                  |      |             |      |          |           |          |                  |
| ĸw               | 14.8 | T           |      |          |           |          |                  |
| Head In Feet     | 60   | T           |      |          |           |          |                  |
| Head in PSI      |      | Ť           |      |          |           |          |                  |
| Leader Mai       |      | 1           |      |          |           |          |                  |

| Heating Y/N | У    |                                 |
|-------------|------|---------------------------------|
| Cooling Y/N | n    |                                 |
| Reset Temp  | 55   | F                               |
| Base KW     | 12.9 | KW removing exisiting motor eff |
|             |      |                                 |

Proposed Case

| Replace Motor Y/N | у       |    |            |         |      |       |           |
|-------------------|---------|----|------------|---------|------|-------|-----------|
| Motor Manf        | Cat #   |    | Efficiency | Voltage | RPM  | Frame | Enclosure |
| Baldor            | EM2515T | 20 | 0.93       | 230/460 | 1760 | 256T  | ODP       |

| New KW                  | 13.9 |                                    |
|-------------------------|------|------------------------------------|
| %KW Committed to Head   | 20%  |                                    |
| KW Committed to head    | 2.8  |                                    |
| Available KW            | 11.1 | KW avilable to apply affinity laws |
| VFD Efficiency          | 97%  | See note on I83                    |
| Line Reactor Efficiency | 97%  |                                    |

| <b>0</b>         |                    |                        | Polaria a |   |     |      |                      |               |   |  |
|------------------|--------------------|------------------------|-----------|---|-----|------|----------------------|---------------|---|--|
| Summer<br>% Flow | Hours of Operation | Existing<br>GPM KW KWH |           |   | GPM | KWH  | Savings<br>KWH Saved |               |   |  |
| 0%               | 0                  | 650                    | 14.8      | 0 | 0   | 0    | 2.8                  | and LR<br>3.0 | 0 |  |
| 0%               | 0                  | 650                    | 14.8      | 0 | 0   | 0    | 2.8                  | 3.0           | 0 |  |
| 80%              | 0                  | 650                    | 14.8      | 0 | 520 | 1408 | 8.5                  | 9.0           | 0 |  |
| 70%              | 0                  | 650                    | 14.8      | 0 | 455 | 1232 | 6.6                  | 7.0           | 0 |  |
| 60%              | 0                  | 650                    | 14.8      | 0 | 390 | 1056 | 5.2                  | 5.5           | 0 |  |
| 50%              | 0                  | 650                    | 14.8      | 0 | 325 | 880  | 4.2                  | 4,4           | 0 |  |
| 40%              | 0                  | 650                    | 14.8      | 0 | 260 | 704  | 3.5                  | 3.7           | 0 |  |
| 30%              | 0                  | 650                    | 14.8      | 0 | 195 | 528  | 3.1                  | 3.3           | 0 |  |
| 30%              | 0                  | 650                    | 14.8      | 0 | 195 | 528  | 3.1                  | 3.3           | 0 |  |
| 30%              | 0                  | 650                    | 14.8      | 0 | 195 | 528  | 3.1                  | 3.3           | 0 |  |
| 0%               | 0                  | 650                    | 14.8      | 0 | 0   | 0    | 2.8                  | 3.0           | 0 |  |
| Totals           | 0                  |                        |           | 0 |     |      |                      |               | 0 |  |

| Winter |                    |     | Existing |       |     | Proposed Savings |      |                   |       |           |               |
|--------|--------------------|-----|----------|-------|-----|------------------|------|-------------------|-------|-----------|---------------|
|        | Hours of Operation | GPM | ĸw       | KWH   | GPM | RPM              | ĸw   | KW wVFD<br>and LR | KWH   | KWH Saved |               |
| 50%    | 320                | 650 | 14.8     | 4724  | 325 | 880              | 4.2  | 4.4               | 1417  | 3307      |               |
| 50%    | 317                | 650 | 14.8     | 4682  | 325 | 880              | 4.2  | 4,4               | 1404  | 3277      |               |
| 55%    | 318                | 650 | 14.8     | 4695  | 358 | 968              | 4.6  | 4.9               | 1564  | 3131      |               |
| 60%    | 446                | 650 | 14.8     | 6584  | 390 | 1056             | 5.2  | 5.5               | 2455  | 4130      |               |
| 65%    | 358                | 650 | 14.8     | 5287  | 423 | 1144             | 5.8  | 6.2               | 2219  | 3068      |               |
| 70%    | 237                | 650 | 14.8     | 3493  | 455 | 1232             | 6.6  | 7.0               | 1657  | 1836      |               |
| 75%    | 119                | 650 | 14.8     | 1753  | 488 | 1320             | 7.5  | 7.9               | 942   | 811       |               |
| 80%    | 108                | 650 | 14.8     | 1590  | 520 | 1408             | 8.5  | 9.0               | 969   | 621       |               |
| 85%    | 21                 | 650 | 14.8     | 313   | 553 | 1496             | 9.6  | 10.2              | 216   | 97        |               |
| 90%    | 15                 | 650 | 14.8     | 224   | 585 | 1584             | 10.9 | 11.6              | 176   | 49        |               |
| 100%   | 0                  | 650 | 14.8     | 0     | 650 | 1760             | 13.9 | 14.8              | 0     | 0         |               |
| Totals | 2259               |     |          | 33345 |     |                  |      |                   | 13019 | 20326     |               |
|        |                    |     |          |       |     |                  |      |                   |       |           | NSTAR Rebates |
|        |                    |     | ADJ      | KW    |     |                  |      |                   |       |           |               |
|        |                    |     |          |       |     |                  |      |                   |       |           |               |

| 97 | 0 |      | 0%  | 0    | 0%   | 0    | 100%   |
|----|---|------|-----|------|------|------|--------|
| 92 | 0 | 7    | 0%  | 3.2  | 0%   | 0    | 90%    |
| 87 | 0 |      | 0%  | 33.6 | 0%   | 0    | 85%    |
| 82 | 0 |      | 0%  | 116  |      | 0    | 80%    |
| 77 | 0 |      | 0%  | 178  | 0%   | 0    | 75%    |
| 72 | 0 |      | 0%  | 325  | 0%   | 0    | 70%    |
| 67 | 0 | 690  | 0%  | 318  | 0%   | 0    | 65%    |
| 62 | 0 |      | 0%  | 446  | 0%   | 0    | 60%    |
| 55 | 0 |      | 0%  | 378  | 0%   | 0    | 55%    |
| 52 |   |      | 0%  | 295  | 50%  | 320  | 50%    |
| 47 | 0 |      | 0%  | 0    | 50%  | 317  | 0%     |
| 42 | 0 |      | 0%  | 0    | 55%  | 318  | 0%     |
| 37 | 0 | 969  | 0%  | 0    | 60%  | 446  | 0%     |
| 32 | 0 |      | 0%  | 0    | 65%  | 358  | <br>0% |
| 27 | 0 |      | 0%  | 0    | 70%  | 237  | 0%     |
| 22 | 0 |      | 0%  | 0    | 75%  | 119  | <br>0% |
| 17 | 0 |      | 0%  | 0    | 80%  | 108  | 0%     |
|    | 0 | 234  | 0.0 | •    | 80 % | 100  | 0.15   |
| 12 | 0 | 46   | 0%  | 0    | 85%  | 21   | 0%     |
| 7  | 0 | 33   | 0%  | 0    | 90%  | 15   | 0%     |
| 2  | 0 | 0    | 0%  |      | 100% | 0    | 0%     |
|    |   | 8760 |     | 1798 |      | 2259 |        |
|    |   | •    |     |      | •    |      |        |
|    |   |      |     |      |      |      |        |
|    |   |      |     |      | 1    |      |        |
|    |   |      |     |      |      |      |        |

Adj % cool Cooling % Heat Flow Hours Flow

Heating Adj Hrs

0% 0% 0% 0% 0% 85% 0% 90% 0% 100% 0%

14.76 5.76 33345 13019 14.8 5.8 9.0

| KW Saved     | 0.00  | 9.00    | 0.0 |  |
|--------------|-------|---------|-----|--|
| KWH Saved    | 0     | 20326.1 |     |  |
| Avg KW Saved | 9.0   | 9.0     | 9.0 |  |
| KWH Saved    | 20326 |         |     |  |
|              |       |         |     |  |



|     |    |        | VFD And Motor |     |        | VFD Only |             |
|-----|----|--------|---------------|-----|--------|----------|-------------|
| HP  | 8  | Rebate | HP            | R   | ebate  | HP       | Rebate      |
| 5   | \$ | 2,000  | 5             | \$  | 2,000  | 5        | \$1,70      |
| 7.5 | \$ | 2,300  | 7.5           | \$  | 2,300  | 7.5      | \$1,90      |
| 10  | \$ | 2,400  | 10            | \$  | 2,400  | 10       | \$2,10      |
| 15  | \$ | 2,900  | 15            | \$  | 2,900  | 15       | \$2,30      |
| 20  | \$ | 3,600  | 20            | \$  | 3,600  | 20       | \$2,60      |
| 25  | \$ | 4,100  | 25            | \$  | 4,100  | 25       | \$3,10      |
| 30  | \$ | 5,100  | 30            | \$  | 5,100  | 30       | \$3,50      |
| 0   | \$ | -      | 0             | \$  |        | 0        | <b>\$</b> - |
| 40  | \$ | 5,600  | 40            | \$  | 5,600  | 40       | \$3,80      |
| 50  | \$ | 5,900  | 50            | \$  | 5,900  | 50       | \$4,50      |
| 60  | \$ | 8,600  | 60            | \$  | 8,600  | 60       | \$5,50      |
| 75  | \$ | 9,600  | 75            | \$  | 9,600  | 75       | \$6,00      |
| 100 | \$ | 10,200 | 100           | \$1 | 10,200 | 100      | \$7,00      |

| ustomer            | Carver Sch    | ools    |                                                                        |
|--------------------|---------------|---------|------------------------------------------------------------------------|
| Tag Name           | Hot Water Pun | np #1   |                                                                        |
| Date               | 3/13/2009     |         |                                                                        |
| ECM Measure        | VFD & Motor R | etrofit |                                                                        |
| Hours of Operation | 2259          |         | 1                                                                      |
| Number Of Pumps    | 1             |         | Indicates the number of pumps either 1= Primary, or 2=Primary and Back |
| Audit ID#          |               |         |                                                                        |
| Utility            | NSTAR         |         | 1                                                                      |
| Voltage            | 460           |         |                                                                        |
| Transformer Size   | 1000          | KVA     | 1                                                                      |
| Location           | Mechanic      | al Room | 1                                                                      |

Base Case

| Info |                 |              |                 |                            |                                    |                                        |                                              |                                                      |                                                                                |                                                                                               |
|------|-----------------|--------------|-----------------|----------------------------|------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Manf | Cat #           | HP           | Efficiency      | Voltage                    | RPM                                | Frame                                  | Times<br>Rewound                             | Insulation<br>Class                                  | Rewind Adj<br>Eff                                                              | Enclosure                                                                                     |
| otor | E660A           | 20           | 0.875           | 230/460                    | 1760                               | 256T                                   | 0                                            | В                                                    | 0.88                                                                           | OPSB                                                                                          |
|      | r Manf<br>Aotor | r Manf Cat # | r Manf Cat # HP | r Manf Cat # HP Efficiency | r Manf Cat # HP Efficiency Voltage | r Manf Cat # HP Efficiency Voltage RPM | r Manf Cat # HP Efficiency Voltage RPM Frame | r Manf Cat # HP Efficiency Voltage RPM Frame Rewound | r Manf Cat # HP Efficiency Voltage RPM Frame Times Insulation<br>Rewound Class | r Manf Cat # HP Efficiency Voltage RPM Frame Times Insulation Rewind Adj<br>Rewound Class Eff |

| Pump Information |      |             |      |          |           |          |                  |
|------------------|------|-------------|------|----------|-----------|----------|------------------|
| Pump Manf        | GPM  | Туре        | Head | Pump EFF | Cal'd BHP | Cal'd kW | Motor<br>loading |
| Armstrong        | 650  | End suction | 60   | 65%      | 15.15     | 14.76    | 76%              |
|                  |      |             |      |          |           |          |                  |
| ĸw               | 14.8 | T           |      |          |           |          |                  |
| Head In Feet     | 60   | T           |      |          |           |          |                  |
| Head in PSI      |      | T           |      |          |           |          |                  |
| Heating Y/N      | У    | T           |      |          |           |          |                  |

 Heating VIN
 y

 Cooling VIN
 n

 Reset Temp
 55

 Base KW
 12.9

Proposed Case

| Replace Motor Y/N | у       | 1  |            |         |      |       |           |
|-------------------|---------|----|------------|---------|------|-------|-----------|
| Motor Manf        | Cat#    |    | Efficiency | Voltage | RPM  | Frame | Enclosure |
| Baldor            | EM2515T | 20 | 0.93       | 230/460 | 1760 | 256T  | ODP       |

| New KW                  | 13.9 | 7                                 |
|-------------------------|------|-----------------------------------|
| %KW Committed to Head   | 20%  |                                   |
| KW Committed to head    | 2.8  |                                   |
| Available KW            | 11.1 | KW avilable to apply affinity law |
| VFD Efficiency          | 97%  | See note on 183                   |
| Line Reactor Efficiency | 97%  |                                   |

| Summer |                       |     | Existing |     |     |      | Proposed |                   |     | Savings   | Avg Temp | Total Hours |    |      | % Heat<br>Flow | Heating<br>Adj Hrs |
|--------|-----------------------|-----|----------|-----|-----|------|----------|-------------------|-----|-----------|----------|-------------|----|------|----------------|--------------------|
| % Flow | Hours of<br>Operation | GPM | ĸw       | КШН | GPM | RPM  | KW       | KW wVFD<br>and LR | KWH | KWH Saved | 97       | c           | 0% | 0    | 0%             |                    |
| 0%     | 0                     | 650 | 14.8     | 0   | 0   | 0    | 2.8      | 3.0               |     | 0         | 92       | 7           | 0% | 3.2  | 0%             |                    |
| 0%     | 0                     | 650 | 14.8     | 0   | 0   | 0    | 2.8      | 3.0               |     | 0         | 87       | 73          | 0% | 33.6 | 0%             |                    |
| 80%    | 0                     | 650 | 14.8     | 0   | 520 | 1408 | 8.5      | 9.0               |     | 0         | 82       | 252         | 0% | 116  | 0%             |                    |
| 70%    | 0                     | 650 | 14.8     | 0   | 455 | 1232 | 6.6      | 7.0               |     | 0         | 77       | 387         | 0% | 178  | 0%             |                    |
| 60%    | 0                     | 650 | 14.8     | 0   | 390 | 1056 | 5.2      | 5.5               |     | 0         | 72       | 707         | 0% | 325  | 0%             |                    |
| 50%    | 0                     | 650 | 14.8     | 0   | 325 | 880  | 4.2      | 4,4               |     | 0         | 67       | 690         | 0% | 318  | 0%             |                    |
| 40%    | 0                     | 650 | 14.8     | 0   | 260 | 704  | 3.5      | 3.7               |     | 0         | 62       | 970         | 0% | 446  | 0%             |                    |
| 30%    | 0                     | 650 | 14.8     | 0   | 195 | 528  | 3.1      | 3.3               |     | 0         | 55       | 821         | 0% | 378  | 0%             |                    |
| 30%    | 0                     | 650 | 14.8     | 0   | 195 | 528  | 3.1      | 3.3               |     | 0         | 52       | 641         | 0% | 295  | 50%            | 3                  |
| 30%    | 0                     | 650 | 14.8     | 0   | 195 | 528  | 3.1      | 3.3               |     | 0         | 47       | 689         | 0% | 0    | 50%            |                    |
| 0%     | 0                     | 650 | 14.8     | 0   | 0   | 0    | 2.8      | 3.0               | (   | 0         | 42       | 691         | 0% | 0    | 55%            | 3                  |
| Totals | 0                     |     |          | 0   |     |      |          |                   |     | 0         | 37       | 969         | 0% | 0    | 60%            |                    |
|        |                       | •   |          |     | •   |      |          |                   |     |           | 32       | 778         | 0% | 0    | 65%            |                    |
|        |                       |     |          |     |     |      |          |                   |     |           | 27       | 514         | 0% | 0    | 70%            |                    |

| Winter |                       |     | Existing |       |     |      | Proposed |                   |       | Savings   |
|--------|-----------------------|-----|----------|-------|-----|------|----------|-------------------|-------|-----------|
| % Flow | Hours of<br>Operation | GPM | ĸw       | KWH   | GPM | RPM  | ĸw       | KW wVFD<br>and LR | кwн   | KWH Saved |
| 50%    | 320                   | 650 | 14.8     | 4724  | 325 | 880  | 4.2      | 4,4               | 1417  | 3307      |
| 50%    | 317                   | 650 | 14.8     | 4682  | 325 | 880  | 4.2      | 4,4               | 1404  | 3277      |
| 55%    | 318                   | 650 | 14.8     | 4695  | 358 | 968  | 4.6      | 4.9               | 1564  | 3131      |
| 60%    | 446                   | 650 | 14.8     | 6584  | 390 | 1056 | 5.2      | 5.5               | 2455  | 4130      |
| 65%    | 358                   | 650 | 14.8     | 5287  | 423 | 1144 | 5.8      | 6.2               | 2219  | 3068      |
| 70%    | 237                   | 650 | 14.8     | 3493  | 455 | 1232 | 6.6      | 7.0               | 1657  | 1836      |
| 75%    | 119                   | 650 | 14.8     | 1753  | 488 | 1320 | 7.5      | 7.9               | 942   | 811       |
| 80%    | 108                   | 650 | 14.8     | 1590  | 520 | 1408 | 8.5      | 9.0               | 969   | 621       |
| 85%    | 21                    | 650 | 14.8     | 313   | 553 | 1496 | 9.6      | 10.2              | 216   | 97        |
| 90%    | 15                    | 650 | 14.8     | 224   | 585 | 1584 | 10.9     | 11.6              | 176   | 49        |
| 100%   | 0                     | 650 | 14.8     | 0     | 650 | 1760 | 13.9     | 14.8              | 0     | 0         |
| Totals | 2259                  |     |          | 33345 |     |      |          |                   | 13019 | 20326     |

|              |        |        | ADJ    | KW    |
|--------------|--------|--------|--------|-------|
| Totals       | Summer | Winter | Summer | Winte |
| Existing KW  | 0.00   | 14.76  |        | 14.8  |
| Proposed KW  | 0.00   | 5.76   | 0.0    | 5.8   |
| Existing KWH | 0      | 33345  |        |       |
| Proposed KWH | 0      | 13019  |        |       |

| KW Saved     | 0.00  | 9.00    | 0.0 | 9 |
|--------------|-------|---------|-----|---|
| KWH Saved    | 0     | 20326.1 |     |   |
| Avg KW Saved | 9.0   | 9.0     | 9.0 |   |
| KWH Saved    | 20326 |         |     |   |
|              |       | -       |     |   |



|      | Adj   | % Heat |                    |
|------|-------|--------|--------------------|
|      |       |        | Heating<br>Adj Hrs |
| .011 | nours |        | Adjilla            |
| 0%   | 0     | 0%     | 0                  |
| 0%   | 3.2   | 0%     | 0                  |
| 0%   | 33.6  | 0%     | 0                  |
| 0%   | 116   | 0%     | 0                  |
| 0%   | 178   | 0%     | 0                  |
| 0%   | 325   | 0%     | 0                  |
| 0%   | 318   | 0%     | 0                  |
| 0%   | 446   | 0%     | 0                  |
| 0%   | 378   | 0%     | 0                  |
| 0%   | 295   | 50%    | 320                |
| 0%   | 0     | 50%    | 317                |
| 0%   | 0     | 55%    | 318                |
| 0%   | 0     | 60%    | 446                |
| 0%   | 0     | 65%    | 358                |
| 0%   | 0     | 70%    | 237                |
| 0%   | 0     | 75%    | 119                |
| 0%   | 0     | 80%    | 108                |
|      |       |        |                    |
| 0%   | 0     | 85%    | 21                 |
| 0%   | 0     | 90%    | 15                 |
| 0%   |       | 100%   | 0                  |
|      | 1798  |        | 2259               |

0 0% 8760



|      |              |       |                           |                            |                 |                           |              |                   |       |       |         |                            |             |                   |       | Sensor |         | SAVINGS           |               | COSTS       |              |                        |                      |              |
|------|--------------|-------|---------------------------|----------------------------|-----------------|---------------------------|--------------|-------------------|-------|-------|---------|----------------------------|-------------|-------------------|-------|--------|---------|-------------------|---------------|-------------|--------------|------------------------|----------------------|--------------|
| Line | Building     | Floor | Room Number / Description | Room Name                  | Fixture<br>Type | Existing Fixture Type     | Fixt.<br>Qty | Existing<br>Hours | Watts | kW    | kWh     | Proposed Fixture Type      | Fixt<br>Qty | Proposed<br>Hours | Watts | kW     | kWh     | Sensor<br>Model # | Sensor<br>Qty | kW<br>Saved | kWh<br>Saved | Total<br>Retrofit Cost | Total<br>Sensor Cost | Total        |
| 1    | High School  | 1     | Carver                    | High School Gym            | G1              | 320w Pulse Start High Bay | 62           | 3,600             | 365   | 22.63 | 81,468  | 5 Lamp T5 HO Eco w/Sensors | 62          | 2,340             | 310   | 19.22  | 44,975  | ixture mou        | 62            | 3.41        | 36,493       | \$ 30,028.48           | s -                  | \$ 30,028.48 |
| 2    | High School  | 1     | Carver                    | High School Wrestling Room | G2              | 1000w Mercury Vapor       | 2            | 3,600             | 1075  | 2.15  | 7,740   | 5 Lamp T5 HO Eco w/Sensors | 2           | 2,340             | 310   | 0.62   | 1,451   | ixture mou        | 2             | 1.53        | 6,289        | \$ 968.66              | s -                  | \$ 968.66    |
| 3    | Middle Schoo | 1     | Carver                    | Middle School Gym          | G1              | 320w Pulse Start High Bay | 22           | 3,600             | 365   | 8.03  | 28,908  | 5 Lamp T5 HO Eco w/Sensors | 22          | 2,340             | 310   | 6.82   | 15,959  | ixture mou        | 22            | 1.21        | 12,949       | \$ 10,655.27           | s -                  | \$ 10,655.27 |
| 4    | 0            | 0     | 0                         | 0                          | 0               | 0                         | 0            | 0                 |       |       |         | 0                          | 0           | 0                 |       |        |         |                   | 0             |             | 0            | s -                    | s -                  | ş -          |
| 476  | 0            | 0     | 0                         | 0                          | 0               | 0                         | 0            | 0                 |       |       |         | 0                          | 0           | 0                 |       |        |         |                   | 0             |             | 0            | s -                    | s -                  | ş -          |
|      |              |       |                           | TOTALS                     |                 |                           | 86           |                   |       | 32.81 | 118,116 |                            | 86          |                   |       | 26.66  | 62384.4 |                   | 86            | 6.15        | 55,732       | \$ 41,652.41           | \$-                  | \$ 41,652.41 |



Town of Carver Middle / High School 60 South Meadow Rd. Carver, MA 02330-1200 David Siedentopf (508) 361-4900

# **Proposal Summary**

| Estimated Current Lighting Load (Wattage)        |              | 32,810          | Watts |
|--------------------------------------------------|--------------|-----------------|-------|
| Estimated Proposed Lighting Load (Wattage)       |              | 26,660          | Watts |
| Estimated Lighting Load Savings (Wattage)        | 6,150        | Watts           |       |
|                                                  |              |                 |       |
| Estimated Current Lighting Usage (kWh)           |              | 118,116         | kWh   |
| Estimated Proposed Lighting Usage (kWh)          |              | 62,384          | kWh   |
| Estimated Lighting Usage Savings (kWh)           | 55,732       | kWh             |       |
|                                                  |              |                 |       |
| Estimated Current Annual Lighting Bill:          | kWh * 0.18   | \$<br>21,261    |       |
| Estimated Proposed Annual Lighting Bill:         | kWh * 0.18   | \$<br>11,229    |       |
| Estimated Proposed Annual Lighting Bill Savings: | \$<br>10,032 |                 |       |
|                                                  |              |                 |       |
| Estimated Total Job Cost                         |              | \$<br>40,991.88 |       |
| Estimated Utility Incentive                      |              | \$<br>-         |       |
| Estimated Customer Net Cost                      |              | \$<br>40,991.88 |       |
| Maintenance Savings                              |              | \$<br>387       |       |
| Net Heating and AC Savings                       |              | \$<br>948       |       |
| Simple Payback (Customer Share/Bill Savings):    | Years =      | 3.6             |       |