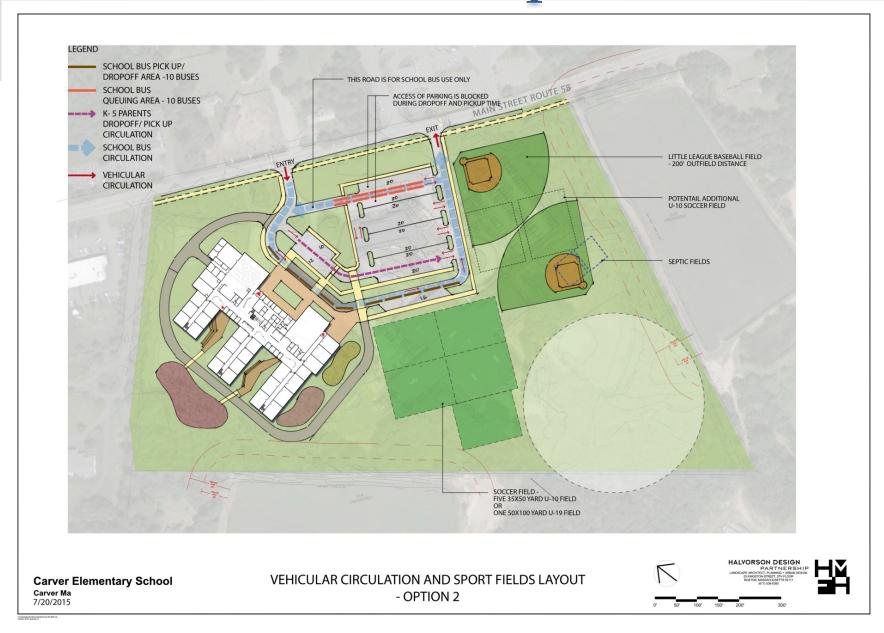
Carver Elementary School

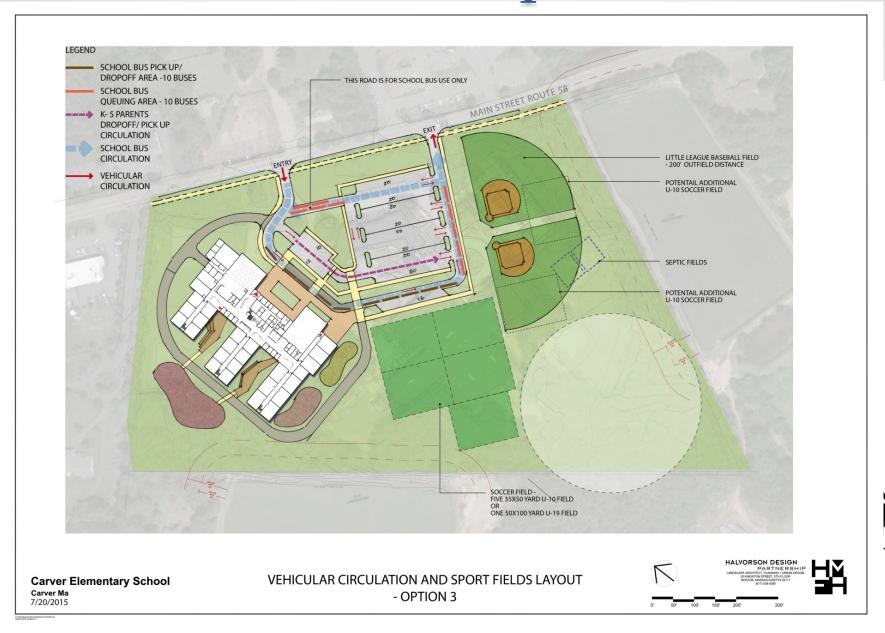
Carver School Building Committee Meeting July 20th, 2015

Site

Site Plan – Option 1

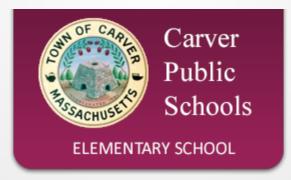


Carver Elementary School Carver Ma 7/20/2015 VEHICULAR CIRCULATION AND SPORT FIELDS LAYOUT - OPTION 1


100'

300'

Site Plan – Option 2



Site Plan – Option 3

HVAC Systems Overview

For Carver Elementary School Carver, MA

Life Cycle Cost Analysis HVAC System Options HVAC System Options Overview

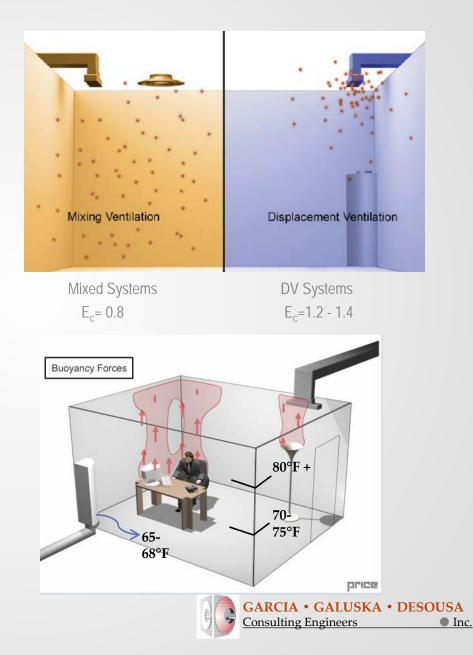
- 1. Baseline: VAV System (ASHRAE Baseline)
- 2. Option 1: Induction Unit System with DOAS
- 3. Option 2: Dehumidification Displacement System with DOAS
- 4. Option 3: Fully Air-Conditioned Displacement System with DOAS
- 5. Option 4: Dehumidification Displacement System with DOAS and Geothermal Plant

HVAC System Comparison

Mixing vs. Displacement Systems

AIR CONDITIONING

- VENTILATION AIR COOLED AND SUPPLIED AT 55 DEG F. TO SPACE
- MAINTAINS SPACE TEMP. AT 75 DEG F.
- ADDITIONAL EQUIP. REQD. WITH INCREASED CAP. TO MAINTAIN 75 DEG F.
- INCREASED DUCT SIZES OR NEED FOR ADDITIONAL PIPING SYSTEM
- INCREASED CONSTRUCTION COST BY 20-30% (Dependent upon AC System)
- INCREASED OPERATIONAL COST BY 25-30% (APPROX. \$1.90/SF)


DEHUMIDIFIED AIR

- VENTILATION AIR COOLED BY DEHUMIDIFICATION AND REHEATED BY HOT GAS HEAT RECOVERY TO 68 DEG F.
- TEMP. FLOATS IN SPACE WITHIN COMFORT ZONE
- REDUCED DUCT SIZES OR NEED FOR
 SECONDARY EQUIPMENT
- REDUCED CONSTRUCTION COST WHEN COMPARED TO CONVENTIONAL NON-CONDITIONED BUILDINGS
- SIMILAR OPERATIONAL COST WHEN COMPARED TO <u>CONVENTIONAL NON AIR</u> <u>CONDITIONED</u> BUILDINGS (APPROX. \$1.40/SF)

Displacement System (Classrooms, Cafeteria, Gymnasium, Corridors)

- Ventilation air is provided from high efficiency packaged gas-fired heat/DX cooling RTU w/ ERV
- Air is delivered at low velocity and at low levels within the space
- The system uses naturally occurring buoyant forces within the space to create a vertical rise of the air throughout the space.
- 2-4° F differential supply air to space
- Supply air rises when heat source is contacted
- Displaces room air upward
- Air rises with pollutants to ceiling
- Air returns at ceiling back to air handling unit

Displacement System

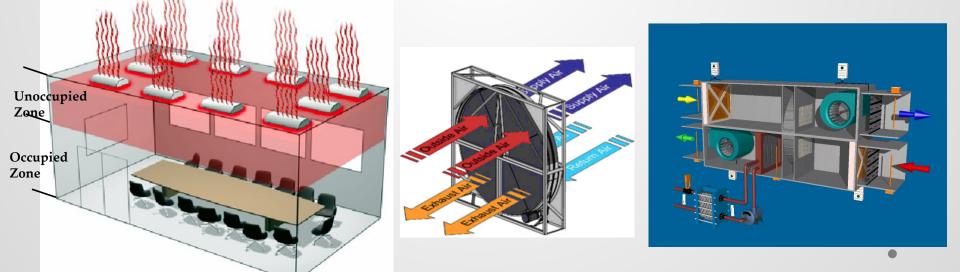
Pros:

- Excellent pollution removal
- Very low noise levels
- Very low air velocity
- Low moisture levels
- Reduced cooling loads
- Reduced initial cost
- Variable volume reheat is not required
- High ventilation effectiveness

Displacement Diffuser Options

Cons:

- Requires Perimeter Radiation Heating
- Dehumidification Only Design (Options 2 & 4) does not provide Cooling Setpoint temperature control

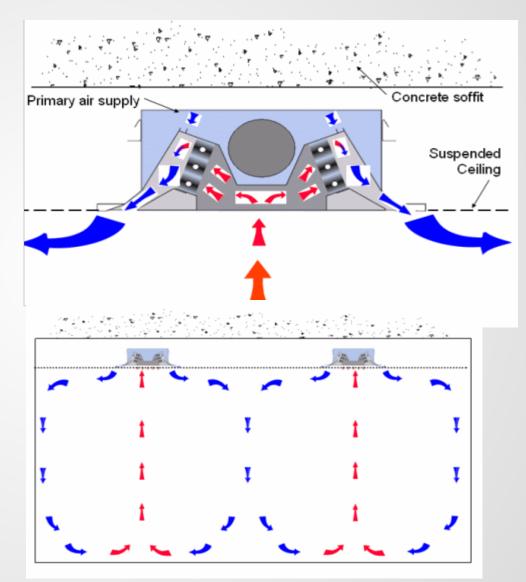

Displacement System – Energy Conservation

Load Calculation Reductions

- Conventional System: All heat generated in room is included in air flow calculation since all airflow is mixed.
- Displacement System: Only loads which occur in the Occupied Zone are factored
- Results in: Smaller equipment & systems and lower installed and operating costs for Displacement Systems

Additional Energy Efficiency Measures

- Energy Recovery: Transfers energy from the return air stream to the supply air stream to pre-heat or pre-cool the outside air.
- Variable Air Volume w/ CO2 Demand Control Ventilation: Modulates the airflow to large single zone areas in accordance to space mounted thermostat and CO2 sensors reducing energy consumption due to reduced air changes.



Induction Units (Administration)

- Ventilation air is provided from high efficiency packaged gas-fired heat/DX cooling RTU w/ ERV
- Primary (Ventilation) Air is supplied to plenum and discharges through nozzles
- Room air is induced through ulletthe heating/cooling coils
- Mixture of Primary and Room ulletair is delivered to room through diffuser slots.
- Condensate drain pans and piping system for condensate removal

Inc.

Induction Units

Pros:

- Energy efficient
- Low Noise Levels
- Flexibility of Installation
- Moderate first cost
- Simplified Controls (No Fans)
- Lower Maintenance (No Terminal Filters)

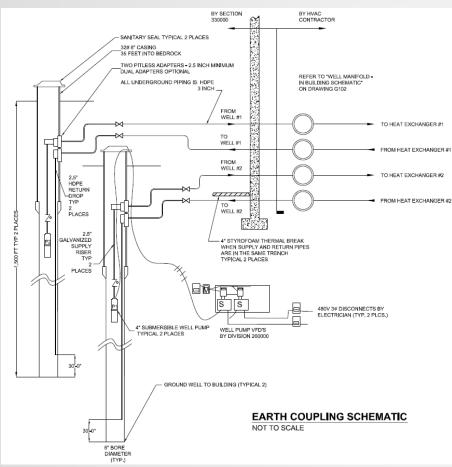
Cons:

- Requires increased coordination with "ceiling" system. (e.g. additional piping, HW, CHW & condensate piping)
- Requires additional ventilation air in some cases
- Increase Energy Consumption <u>VS</u> - GALUSKA • DESOUSA Dehumidified Artir System Inc.

High Efficiency Heating Hot Water and Chilled Water Plant

Boiler Plant

- High efficiency (90%+) gas-fired condensing boilers
- Boiler temperature reset controls
- Variable speed pumps with VFD's

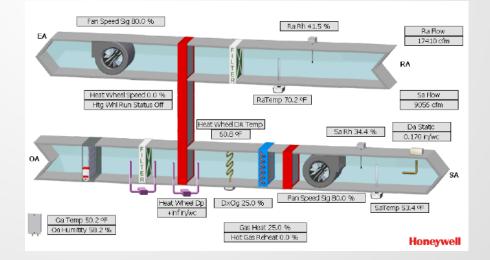

Chiller Plant

- High efficiency air-cooled chiller
- Chilled water temperature reset controls
- Variable speed pumps with VFD's

Geothermal Heat Pump Plant

• Standing column geothermal wells

- Water-to-water source heat pump chillers
- Plate and frame heat exchanger



Building Automation and

Energy Management System

- System (Zone) Scheduling
- Occupied-Unoccupied Control
- Night Setback Operation
- Lighting Control System Integration
- Increased Energy Savings
- Integrate with Preventative Maintenance Scheduling

Energy Economics Methodology Energy **Economics** • Architecture Life Cycle Cost • Weather data • Installation costs Analysis • Building occupancy Maintenance cost & usage • System Operating Characteristics • Util Energy Simulation

Energy Model Methodology

- Computer Simulation of Building Energy Usage using Department of Energy (DOE-2)/eQuest.
- Model consists of project specific:
- Architectural features (geometry, orientation, envelope)
- Local Weather Data
- Occupancy, Lighting, Equipment schedules
- HVAC System Data (specific to each system option)
- Local Utility Rates

Energy Economics Methodology

- Computer calculation of HVAC System economics utilizing NIST BLCC 5.
- Calculation factors:
 - o HVAC System and Maintenance Cost Estimates
 - Prepared in house using recent project cost data and industry standard estimating references.
 - Standard Industry Discount, Inflation and Interest Rates

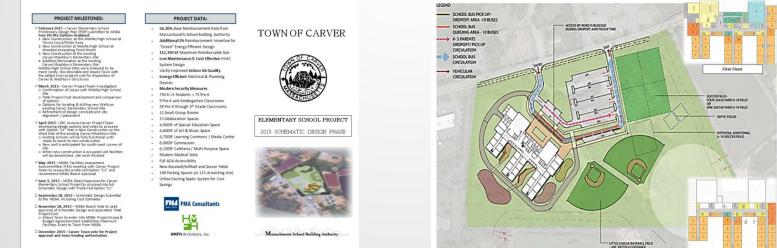
Example Summary of Results

Baseline	System	GROSS CAPITAL INVESTMENT*	ANNUAL ELEC. CONS. (KWH)	ANNUAL GAS CONS. (MBTU)	ANNUAL ELECTRIC COST	ANNUAL GAS COST	COMBINED UTILITY COST	ANNUAL UTILITY \$/S.F.	ANNUAL MAINT. COST	COMBINED ANNUAL EXPENSE	COMBINED EXPENSE SAVINGS**	TOTAL LIFE-CYCLE SAVINGS***	DISCOUNTED PAYBACK (YEARS)****
-	1. Hot water coil heating/chilled water coil cooling VAV RTU system with terminal VAV boxes with hot water reheat coils 2. Standard efficiency gas-fired boiler plant 3. High efficiency water-cooled chiller plant with cooling towers	\$7,109,100	1,048,000	8,877.4	\$173,976	\$106,858	\$280,834	\$1.43	\$40,200	\$321,034	-	-	-

Option	System	GROSS CAPITAL INVESTMENT*	ANNUAL ELEC. CONS. (KWH)	ANNUAL GAS CONS. (MBTU)	ANNUAL ELECTRIC COST	ANNUAL GAS COST	COMBINED UTILITY COST	ANNUAL UTILITY \$/S.F.	ANNUAL MAINT. COST	COMBINED ANNUAL EXPENSE	COMBINED EXPENSE SAVINGS**	TOTAL LIFE-CYCLE SAVINGS***	DISCOUNTED PAYBACK (YEARS)****
1	1. Hot/chilled water coil induction units 2. Hot water coil heating/chilled water cooling 100% O.A. ventilating units with energy recovery serving fan coil units 3. Hot water coil heating/chilled water cooling RTU's with demand ventilation 4. High efficiency gas-fired condensing boiler plant 5. High efficiency air-cooled chiller plant	\$7,208,800	1,324,000	4,666.6	\$219,776	\$56,172	\$275,948	\$1.41	\$31,300	\$307,248	\$13,786	\$330,775	8
2	 Displacement ventilation diffusers and perimeter hot water radiant heating panels Gas-fired heating/dx cooling VAV ventilating units with energy recovery and demand ventilation Gas-fired heating/dx cooling 100% A ventilating units with energy recovery with terminal chilled/hot water coil induction units High efficiency gas-fired condensing central boiler plant High efficiency air-cooled chiller plant 	\$5,828,420	1,098,000	5,827.6	\$182.271	\$70,147	\$252,418	\$1.29	\$34,575	\$286,993	\$34,041	\$2,124,599	N/A*****
3	1. Displacement ventilation diffusers and perimeter hot water radiant heating panels 2. Hot water coil heating/chilled water coil cooling VAV ventilating units with energy recovery and demand ventilation 3. Hot water coil heating/chilled water coil cooling 100% O.A. ventilating units with energy recovery with terminal chilled/hot water coil induction units 4. High efficiency gas-fired condensing central boiler plant 5. High efficiency air-cooled chiller plant 6. Geothermal well with water-to-water source heat pump chillers with water-to- water heat exchangers	\$7,617,300	1,315,000	2,990.1	\$218,294	\$35,992	\$254,286	\$1.30	\$33,275	\$287,561	\$33,473	\$410,446	17

Thank You

HVAC Questions and Discussion



Next Steps:

- 3/25/15 SBC Approve Preferred Option
- 4/13/15 SBC Approve Preferred Schematic Report for Submission to MSBA
- 5/13/15 MSBA Facilities Assessment Subcommittee
- 6/3/15 MSBA Board Approval to Proceed into Schematic Design (Conditional Approval*)
- 6/30/15 FAS PSR Supplemental Info Due*
- 8/3/15, 8/17/15 SBC Meetings (Design Presentations)
- 8/24/15 Schematic Design sent to Estimators
- 8/31/15 SBC Meeting, Design Briefing & VM Option Discussion
- 9/8/15 SBC Meets to Review Estimates & Approve VM Options
- 9/17/15 Schematic Estimates/Budget Due to MSBA
- 10/1/15 Schematic Design Submittal to MSBA
- 11/18/15 MSBA Board Approval of Schematic Design
- **TBD** Carver Town Meeting/Vote on Project Funding

Community Outreach:

- Old Home Day July 25th, 2015
- Mobile Home Park Presentation to Board of Directors
- Local Cable Project Updates
- Chance Court Outreach (after Design more detailed)
- Farmers Market (September)
- Project Informational Flyer (draft):

Second Floor

Discussion / Questions?

Carver School Building Committee Meeting July 20th, 2015

